首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   568篇
  免费   34篇
  602篇
  2023年   5篇
  2022年   6篇
  2021年   20篇
  2020年   14篇
  2019年   15篇
  2018年   18篇
  2017年   11篇
  2016年   19篇
  2015年   31篇
  2014年   37篇
  2013年   37篇
  2012年   55篇
  2011年   41篇
  2010年   26篇
  2009年   18篇
  2008年   25篇
  2007年   38篇
  2006年   28篇
  2005年   31篇
  2004年   29篇
  2003年   19篇
  2002年   17篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   9篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1978年   2篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1970年   1篇
排序方式: 共有602条查询结果,搜索用时 15 毫秒
71.

Background

The bovine rumen maintains a diverse microbial community that serves to break down indigestible plant substrates. However, those bacteria specifically adapted to degrade cellulose, the major structural component of plant biomass, represent a fraction of the rumen microbiome. Previously, we proposed scaC as a candidate for phylotyping Ruminococcus flavefaciens, one of three major cellulolytic bacterial species isolated from the rumen. In the present report we examine the dynamics and diversity of scaC-types both within and between cattle temporally, following a dietary switch from corn-silage to grass-legume hay. These results were placed in the context of the overall bacterial population dynamics measured using the 16S rRNA.

Principal Findings

As many as 117 scaC-types were estimated, although just nineteen were detected in each of three rumens tested, and these collectively accounted for the majority of all types present. Variation in scaC populations was observed between cattle, between planktonic and fiber-associated fractions and temporally over the six-week survey, and appeared related to scaC phylogeny. However, by the sixth week no significant separation of scaC populations was seen between animals, suggesting enrichment of a constrained set of scaC-types. Comparing the amino-acid translation of each scaC-type revealed sequence variation within part of the predicted dockerin module but strong conservation in the N-terminus, where the cohesin module is located.

Conclusions

The R. flavefaciens species comprises a multiplicity of scaC-types in-vivo. Enrichment of particular scaC-types temporally, following a dietary switch, and between fractions along with the phylogenetic congruence suggests that functional differences exist between types. Observed differences in dockerin modules suggest at least part of the functional heterogeneity may be conferred by scaC. The polymorphic nature of scaC enables the relative distribution of R. flavefaciens strains to be examined and represents a gene-centric approach to investigating the intraspecific adaptation of an important specialist population.  相似文献   
72.
73.
Neural crest cells exhibit dramatic migration behaviors as they populate their distant targets. Using a line of zebrafish expressing green fluorescent protein (sox10:EGFP) in neural crest cells we developed an assay to analyze and quantify cell migration as a population, and use it here to characterize in detail the subtle defects in cell migration caused by ethanol exposure during early development. The challenge was to quantify changes in the in vivo migration of all Sox10:EGFP expressing cells in the visual field of time-lapse movies. To perform this analysis we used an Optical Flow algorithm for motion detection and combined the analysis with a fit to an affine transformation. Through this analysis we detected and quantified significant differences in the cell migrations of Sox10:EGFP positive cranial neural crest populations in ethanol treated versus untreated embryos. Specifically, treatment affected migration by increasing the left-right asymmetry of the migrating cells and by altering the direction of cell movements. Thus, by applying this novel computational analysis, we were able to quantify the movements of populations of cells, allowing us to detect subtle changes in cell behaviors. Because cranial neural crest cells contribute to the formation of the frontal mass these subtle differences may underlie commonly observed facial asymmetries in normal human populations.  相似文献   
74.

Background

Chagas disease, caused by infection with the protozoan Trypanosoma cruzi, remains a serious public health issue in Latin America. Genetically diverse, the species is sub-divided into six lineages, known as TcI–TcVI, which have disparate geographical and ecological distributions. TcII, TcV, and TcVI are associated with severe human disease in the Southern Cone countries, whereas TcI is associated with cardiomyopathy north of the Amazon. T. cruzi persists as a chronic infection, with cardiac and/or gastrointestinal symptoms developing years or decades after initial infection. Identifying an individual''s history of T. cruzi lineage infection directly by genotyping of the parasite is complicated by the low parasitaemia and sequestration in the host tissues.

Methodology/Principal Findings

We have applied here serology against lineage-specific epitopes of the T. cruzi surface antigen TSSA, as an indirect approach to allow identification of infecting lineage. Chagasic sera from chronic patients from a range of endemic countries were tested by ELISA against synthetic peptides representing lineage-specific TSSA epitopes bound to avidin-coated ELISA plates via a biotin labelled polyethylene glycol-glycine spacer to increase rotation and ensure each amino acid side chain could freely interact with their antibodies. 79/113 (70%) of samples from Brazil, Bolivia, and Argentina recognised the TSSA epitope common to lineages TcII/TcV/TcVI. Comparison with clinical information showed that a higher proportion of Brazilian TSSApep-II/V/VI responders had ECG abnormalities than non-responders (38% vs 17%; p<0.0001). Among northern chagasic sera 4/20 (20%) from Ecuador reacted with this peptide; 1/12 Venezuelan and 1/34 Colombian samples reacted with TSSApep-IV. In addition, a proposed TcI-specific epitope, described elsewhere, was demonstrated here to be highly conserved across lineages and therefore not applicable to lineage-specific serology.

Conclusions/Significance

These results demonstrate the considerable potential for synthetic peptide serology to investigate the infection history of individuals, geographical and clinical associations of T. cruzi lineages.  相似文献   
75.
We report a study on the effect of the fluorescent probe eosin on some of the reactions involved in the conformational transitions that lead to the occlusion of the K(+)-congener Rb(+) in the Na(+)/K(+)-ATPase. Eosin decreases the equilibrium levels of occluded Rb(+), this effect being fully attributable to a decrease in the apparent affinity of the enzyme for Rb(+) since the capacity for occlusion remains independent of eosin concentration. The results can be quantitatively described by a model that assumes that two molecules of eosin are able to bind to the Na(+)/K(+)-ATPase, both to the Rb(+)-free and to the Rb(+)-occluded enzyme regardless of the degree of cation occlusion. Concerning the effect on the affinity for Rb(+) occlusion, transient state experiments show that eosin reduces the initial velocity of occlusion, and that, like ATP, it increases the velocity of deocclusion of Rb(+). Interactions between eosin and ATP on Rb(+)-release experiments seem to indicate that eosin binds to the low-affinity site of ATP from which it exerts effects that are similar to those of the nucleotide.  相似文献   
76.
77.
78.
DNA of higher eukaryotes is organized in supercoiled loops anchored to a nuclear matrix (NM). The DNA loops are attached to the NM by means of non-coding sequences known as matrix attachment regions (MARs). Attachments to the NM can be subdivided in transient and permanent, the second type is considered to represent the attachments that subdivide the genome into structural domains. As yet very little is known about the factors involved in modulating the MAR-NM interactions. It has been suggested that the cell is a vector field in which the linked cytoskeleton-nucleoskeleton may act as transducers of mechanical information. We have induced a stable change in the typical morphology of cultured HeLa cells, by chronic exposure of the cells to the polar compound dimethylsulfoxide (DMSO). Using a PCR-based method for mapping the position of any DNA sequence relative to the NM, we have monitored the position relative to the NM of sequences corresponding to four independent genetic loci located in separate chromosomes representing different territories within the cell nucleus. Here, we show that stable modification of the NM morphology correlates with the redefinition of DNA loop structural domains as evidenced by the shift of position relative to the NM of the c-myc locus and the multigene locus PRM1 --> PRM2 --> TNP2, suggesting that both cell and nuclear shape may act as cues in the choice of the potential MARs that should be attached to the NM.  相似文献   
79.
Summary Traditional breeding has been widely used in forestry. However, this technique is inefficient because trees have a long and complex life cycle that is not amenable to strict control by man. Fortunately, the development of genetic engineering is offering new ways of breeding and allowing the incorporation of new traits in plant species through the introduction of foreign genes (transgenes). The introduction of selected traits can be used to increase the productivity and commercial value of trees and other plants. For example, some species have been endowed with resistance to herbicide and pathogens such as insects and fungi. Also, it has been possible to introduce genes that modify development and wood quality, and induce sexual sterility. The development of transgenic trees has required the implementation of in vitro regeneration techniques such as organogenesis and somatic embryogenesis. Release of transgenic species into the agricultural market requires a standardized biosafety regulatory frame and effective communication between the scientific community and society to dissipate the suspicions associated with transgenic products.  相似文献   
80.
This article presents the first compilation of marine non-indigenous species (NIS) of algae and macro-invertebrates invading Chilean waters. A total of 32 cosmopolitan and non-cosmopolitan species are reported. Among them there are six species considered as extending their southern range of distribution in connection with El Niño events. The article highlights negative and positive impacts caused by marine NIS invasions. Among the first are Codium fragile var. tomentosoide, considered as a pest in Gracilaria chilensis aquaculture facilities in northern Chile, and Ciona intestinalis, a pest in scallop aquaculture installations. Among the second are bio-engineers species, such as the ascidian Pyura praeputialis and the sea grass Heterozostera tasmanica, which have caused an increase in local biodiversity and enhancement of nursery grounds via the creation of new habitats. Further more, invaders such as the algae Mastocarpus papillosus, Porphyra linearis and P. pseudolinearis represent new exploitable resources, extracted by coastal food gatherers along the coast (M. papillosus) or potential species to develop aquaculture. Additional information is presented on the anemone Anemonia alicemartinae, which appears to be a native species (?), having shown in the past 40–50 years, a geographical southward range extension of approximately 1900 km. The number of NIS reported for Chile is compared with those published for the southwestern Atlantic, South Africa, North America (Atlantic and Pacific coasts) and New Zealand. It is suggested that probably the low number of Chilean NIS is due to the fact that the Chilean coasts are environmentally less stressed than other coasts in the world, due to the scarcity of estuaries, gulfs, enclosed bays, lagoons and low human populations. These kinds of sheltered areas have been suggested as centers for bio-invasions, due to the high rate of human-mediated transfer and increase of pollutants. Furthermore, none of NIS reported from Chile show a fast geographical expansion rate (exception of A. alicemartinae), nor invading strategies such as those described for marine NIS in other latitudes, where notorious ecological unbalances following invasions have been observed. An alternative hypothesis is that the low number of marine NIS invading Chile is underestimated, since the modern list of species generated through specific taxonomically intensive port and harbor surveys is still lacking. Fifteen species (five invertebrate and 10 fish) have been deliberately imported to Chile for aquaculture. The invertebrates appear to be controlled within aquaculture facilities and have not established naturalized populations or caused direct ecological impacts on local communities. On the contrary, several millions of salmoniforms (and rainbow trout) have escaped from farming facilities in southern Chile and established naturalized populations. Studies on ecological impacts are lacking. These escapees are also playing a role in the enhancement of artisanal and sport fishery activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号