首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   575篇
  免费   40篇
  615篇
  2023年   5篇
  2022年   7篇
  2021年   20篇
  2020年   14篇
  2019年   15篇
  2018年   19篇
  2017年   13篇
  2016年   21篇
  2015年   33篇
  2014年   37篇
  2013年   38篇
  2012年   56篇
  2011年   42篇
  2010年   26篇
  2009年   18篇
  2008年   26篇
  2007年   38篇
  2006年   28篇
  2005年   31篇
  2004年   29篇
  2003年   19篇
  2002年   17篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   9篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1978年   2篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1970年   1篇
排序方式: 共有615条查询结果,搜索用时 0 毫秒
501.
Berry formation is the process of ovary conversion into a functional fruit, and is characterized by abrupt changes in the content of several phytohormones, associated with pollination and fertilization. Much effort has been made in order to improve our understanding of berry development, particularly from veraison to post-harvest time. However, the period of berry formation has been poorly investigated, despite its importance. Phytohormones are involved in the control of fruit formation; hence it is important to understand the regulation of their content at this stage. Grapevine is an excellent fleshy-fruit plant model since its fruits have particularities that differentiate them from those of commonly studied organisms. For instance, berries are prepared to cope with stress by producing several antioxidants and they are non-climacteric fruits. Also its genome is fully sequenced, which allows to identify genes involved in developmental processes. In grapevine, no link has been established between pollination and phytohormone biosynthesis, until recently. Here we highlight relevant findings regarding pollination effect on gene expression related to phytohormone biosynthesis, and present results showing how quickly this effect is achieved.  相似文献   
502.
Proline is crucial for energizing critical events throughout the life cycle of Trypanosoma cruzi, the etiological agent of Chagas disease. The proline breakdown pathway consists of two oxidation steps, both of which produce reducing equivalents as follows: the conversion of proline to Δ1-pyrroline-5-carboxylate (P5C), and the subsequent conversion of P5C to glutamate. We have identified and characterized the Δ1-pyrroline-5-carboxylate dehydrogenase from T. cruzi (TcP5CDH) and report here on how this enzyme contributes to a central metabolic pathway in this parasite. Size-exclusion chromatography, two-dimensional gel electrophoresis, and small angle x-ray scattering analysis of TcP5CDH revealed an oligomeric state composed of two subunits of six protomers. TcP5CDH was found to complement a yeast strain deficient in PUT2 activity, confirming the enzyme''s functional role; and the biochemical parameters (Km, kcat, and kcat/Km) of the recombinant TcP5CDH were determined, exhibiting values comparable with those from T. cruzi lysates. In addition, TcP5CDH exhibited mitochondrial staining during the main stages of the T. cruzi life cycle. mRNA and enzymatic activity levels indicated the up-regulation (6-fold change) of TcP5CDH during the infective stages of the parasite. The participation of P5C as an energy source was also demonstrated. Overall, we propose that this enzymatic step is crucial for the viability of both replicative and infective forms of T. cruzi.  相似文献   
503.
The first recorded electroantennographic preliminary studies on stingless bees have been performed using two species of Frieseomelitta from Brazil. Experiments with F. silvestrii and F. varia showed that antennae respond to hexane extracts of heads and abdomens of both species and posterior tibia of F. silvestrii (which carry plant resin), as well as to the pure compounds 2-heptanol and 2-nonanol, which occur in the mandibular glands of both species, and to the terpenes alpha-cubebene, humulene, and beta-caryophyllene found on their tibia and in the cerumen of their nests.  相似文献   
504.
Currently, odorant‐binding proteins (OBPs) are considered the first filter for olfactory information for insects and constitute an interesting target for pest control. Thus, an OBP (HeleOBP) from the scarab beetle Hylamorpha elegans (Burmeister) was identified, and ligand‐binding assays based on fluorescence and in silico approaches were performed, followed by a simulated binding assay. Fluorescence binding assays showed slight binding for most of the ligands tested, including host‐plant volatiles. A high binding affinity was obtained for β‐ionone, a scarab beetle‐related compound. However, the binding of its analogue α‐ionone was weaker, although it is still considered good. On the other hand, through a three‐dimensional model of HeleOBP constructed by homology, molecular docking was carried out with 29 related ligands to the beetle. Results expressed as free binding energy and fit quality (FQ) indicated strong interactions of sesquiterpenes and terpenoids (α‐ and β‐ionone) with HeleOBP as well as some aromatic compounds. Residues such as His102, Tyr105 and Tyr113 seemed to participate in the interactions previously mentioned. Both in silico scores supported the experimental affinity for the strongest ligands. Therefore, the activity of α‐ionone, β‐ionone and 2‐phenyl acetaldehyde at antennal level was studied using electroantenography (EAG). Results showed that the three ligands are electrophysiologically active. However, an aliquot of β‐ionone (represented by 3.0 ng) elicited stronger EAG responses in antennae of males than of females. Finally, the role of these ligands as potential semiochemicals for H. elegans is discussed.  相似文献   
505.
506.
A group of mutations characterized by trinucleotide repeat expansion causes human diseases such as the Fragile X syndrome, Huntington disease (HD), and myotonic dystrophy. Methods based on PCR amplification of the CGG and CAG repeats region could facilitate the development of a rapid screening assay; unfortunately, amplification across CGG and CAG repeats can be inefficient and unreliable due to the G + C base composition. The utility of the PCR on modified DNA for amplification of the CGG and CAG repeats at the Fragile X syndrome and HD has been reported. In the present study, we analyzed the utility of PCR on modified DNA as a rapid screening method for diagnosis of patients with Fragile X syndrome and HD. A comparative analysis realized with 38 Fragile X and 29 HD patients showed that the molecular diagnosis by simple PCR on modified DNA has a sensitivity and specificity of 100% in Fragile X patients and 94.1% and 91.6% in HD patients. The results achieved from the statistical analysis allowed us to conclude that the amplification by simple PCR on modified DNA is a reliable and useful method for the molecular diagnosis of the Fragile X syndrome, but not for the HD.  相似文献   
507.
Melatonin (N-acetyl-5-methoxytryptamine) and its immediate precursor N-acetyl serotonin in the metabolism of tryptophan are free radical scavengers that have been found to protect against non-enzymatic lipid peroxidation in many experimental models. By contrast, little is known about the antioxidant ability of these indoleamines against NADPH enzymatic lipid peroxidation. The light emission produced by rat-liver microsomes, expressed as total cpm during 180 min of incubation at 37 degrees C, was two-fold greater in the presence of ascorbate (0.4mM) when compared with NADPH (0.2 mM). Maximal peaks of light emission produced by microsomes lipid peroxidized with ascorbic-Fe(2+) or NADPH and expressed as cpm were 354,208 (at 60 min) and 135,800 (at 15 min), respectively. During non-enzymatic lipid peroxidation a decrease of total chemiluminescence (inhibition of lipid peroxidation) was observed when increasing concentrations of melatonin were added to liver microsomes. The protective effect was concentration-dependent. The inhibition observed in light emission was coincident with the protection of the most PUFAs. Preincubation of microsomes with N-acetyl serotonin reduced these changes very dramatically. Thus, in the presence of both antioxidants (0.36, 0.75, 1.5 mM), light emission percent inhibition during non-enzymatic (ascorbate-Fe(2+)) lipid peroxidation of rat liver microsomes was for melatonin: 6.12, 16.20, 34.88 and for N-acetyl serotonin: 85.10, 88.48, 84.4 respectively. The incubation of rat liver microsomes in the presence of NADPH (0.36, 0.75, 1.5 mM) produce a sudden increase of chemiluminescence that gradually increased and reached a maximal value at about 15 min; however, N-acetyl serotonin reduced these changes very efficiently.  相似文献   
508.
Neurotrophins are trophic factors that regulate important neuronal functions. They bind two unrelated receptors, the Trk family of receptor-tyrosine kinases and the p75 neurotrophin receptor (p75). p75 was recently identified as a new substrate for gamma-secretase-mediated intramembrane proteolysis, generating a p75-derived intracellular domain (p75-ICD) with signaling capabilities. Using PC12 cells as a model, we studied how neurotrophins activate p75 processing and where these events occur in the cell. We demonstrate that activation of the TrkA receptor upon binding of nerve growth factor (NGF) regulates the metalloprotease-mediated shedding of p75 leaving a membrane-bound p75 C-terminal fragment (p75-CTF). Using subcellular fractionation to isolate a highly purified endosomal fraction, we demonstrate that p75-CTF ends up in endosomes where gamma-secretase-mediated p75-CTF cleavage occurs, resulting in the release of a p75-ICD. Moreover, we show similar structural requirements for gamma-secretase processing of p75 and amyloid precursor protein-derived CTFs. Thus, NGF-induced endocytosis regulates both signaling and proteolytic processing of p75.  相似文献   
509.
Glutathione (GSH) is an antioxidant synthesized from three constitutive amino acids (CAA): cysteine (Cys), glycine (Gly) and glutamate (Glu). Glutathione plays an important role in oocyte maturation, fertilization and early embryo development. This study aimed to investigate the effect of Cys (0.6 mM), Gly (0.6 mM) and Glu (0.9 mM) supplementation during in vitro fertilization (IVF) of cattle oocytes. In a Pilot Experiment, de novo synthesis of GSH in bovine zygote was evaluated using a modified TALP medium prepared without MEM-essential and MEM-non-essential amino acids (mTALP): mTALP + CAA (constitutive amino acids); mTALP + CAA+5 mMBSO (buthionine sulfoximide); mTALP + Cys + Gly; mTALP + Cys + Glu and mTALP + Gly + Glu. This evidence led us to investigate the impact of CAA supplementation to TALP medium (with essential and non-essential amino acids) on zygote viability, lipid peroxidation, total intracellular GSH content (include reduced and oxidized form; GSH-GSSG), pronuclear formation in zygotes and subsequent embryo development. IVF media contained a) TALP; b) TALP + Cys + Gly + Glu (TALP + CAA); c) TALP + Cys + Gly; d) TALP + Cys + Glu; e) TALP + Gly + Glu, were used. Total GSH-GSSG concentration was increased in TALP, TALP + CAA, and TALP + Cys + Gly. The viability of zygote was similar among treatments. Lipid peroxidation was increased in zygote fertilized with TALP + Cys + Gly; TALP + Cys + Glu; TALP + Gly + Glu and TALP + CAA. The percentage of penetrated oocytes decreased in TALP + CAA and TALP + Cys + Gly. The cleavage rate was lower in TALP + CAA and TALP + Gly + Glu. The percentage of embryos developing to the blastocyst stage was lower in TALP + Cys + Glu and TALP + CAA. In conclusion, we have demonstrated the synthesis of GSH during IVF. However, Cys, Gly and Glu supplementation to TALP medium had negative effects on embryonic development.  相似文献   
510.
The effect of timing in providing dexamethasone treatment after intracerebral hematoma was evaluated in rats with hematoma induced by a subcortical collagenase injection. Male Sprague–Dawley rats (n = 30; body weight, 185 to 230 g) received dexamethasone (1 mg/kg) intraperitoneally at 2 h, 4 h, or 6 h (1 group per time point) after intracerebral collagenase injection, with another dose (1 mg/kg) administered at 24 h after collagenase injection. Neurologic examinations and rotarod treadmill tests were used to evaluate motor behavior before and at 24 and 48 h after intracerebral injection. Rats were euthanized after the last behavioral test. Brains were evaluated for hematoma size, number of penumbral necrotic neurons, neutrophils within the hematoma, and astrocytic response. Compared with the control and other treatment groups, rats treated with dexamethasone at 2 and 24 h after intracerebral collagenase injection scored significantly better on neurologic exams and rotarod tests. Hematoma volume was significantly smaller in all treated groups than in the control group but did not differ between treatment groups. Fewer neutrophils were seen in the perihematoma region of all treated rats compared with controls, but the number of necrotic neurons was decreased significantly only in the group treated with dexamethasone at 2 and 24 h. These results indicate that a 1-mg/kg dose of dexamethasone is beneficial for treatment of intracerebral hemorrhage, particularly if administered early after the hemorrhagic insult.Traumatic cerebral hemorrhages, which in veterinary patients are caused mainly by automobile accidents and falls, are diagnostic and therapeutic challenges.15 Animal models have played an important role in elucidating the cascade of cellular and biochemical events occurring after traumatic brain injury.7 These models have helped to elucidate various aspects of the pathogenesis and treatment of intracranial hemorrhaging. Among these, the collagenase-induced intracerebral hematoma model14 is highly reproducible and shows many characteristics of the intracerebral hemorrhagic process in mammals. In addition, the short- and long-term histologic and behavioral changes associated with this model have been evaluated.5,6 Compared with the blood infusion model, the collagenase model causes greater primary injury that occurs distal to the hematoma, and neurologic deficits resolve less rapidly over time, making the collagenase model more appealing for long-term studies.12The efficacy of corticosteroids for the treatment of brain hemorrhages has been evaluated in different experimental studies with conflicting results.3,8-11 Administration of corticosteroids at 1 h after hematoma induction is beneficial for the treatment of this condition.10,11,16 Although these studies have promising results, the interval between trauma and treatment might greatly influence the response to corticosteroid treatment. The aim of this study was to assess the motor performance and histopathology associated with dexamethasone treatment at 2, 4, and 6 h after hematoma induction in the intracranial collagenase rat model. A second dexamethasone dose was administered 24 h after collagenase injection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号