首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11067篇
  免费   1006篇
  国内免费   1篇
  12074篇
  2022年   109篇
  2021年   197篇
  2020年   113篇
  2019年   150篇
  2018年   195篇
  2017年   155篇
  2016年   270篇
  2015年   498篇
  2014年   539篇
  2013年   613篇
  2012年   840篇
  2011年   763篇
  2010年   511篇
  2009年   464篇
  2008年   697篇
  2007年   650篇
  2006年   596篇
  2005年   606篇
  2004年   589篇
  2003年   572篇
  2002年   505篇
  2001年   112篇
  2000年   90篇
  1999年   101篇
  1998年   170篇
  1997年   121篇
  1996年   120篇
  1995年   110篇
  1994年   94篇
  1993年   71篇
  1992年   85篇
  1991年   68篇
  1990年   74篇
  1989年   58篇
  1988年   73篇
  1987年   47篇
  1986年   61篇
  1985年   69篇
  1984年   80篇
  1983年   59篇
  1982年   60篇
  1981年   72篇
  1980年   56篇
  1979年   54篇
  1978年   53篇
  1977年   47篇
  1976年   38篇
  1974年   40篇
  1973年   42篇
  1970年   33篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
1. The rate of gluconeogenesis from alanine in the perfused rat liver is affected by the presence of other metabolizable substances, especially fatty acids, ornithine and ethanol. Gluconeogenesis is accelerated by oleate and by ornithine. When both oleate and ornithine were present the acceleration was greater than expected on the basis of mere additive effects. 2. Much NH(3) and some urea were formed from alanine when no ornithine was added. With ornithine almost all the nitrogen released from alanine appeared as urea. 3. Lactate was a major product of alanine metabolism. Addition of oleate, and especially of oleate plus ornithine, decreased lactate formation. 4. Ethanol had no major effect on gluconeogenesis from alanine when this was the sole added precursor. Gluconeogenesis was strongly inhibited (87%) when oleate was also added, but ethanol greatly accelerated gluconeogenesis when ornithine was added together with alanine. 5. In the absence of ethanol the alanine carbon and alanine nitrogen removed were essentially recovered in the form of glucose, lactate, pyruvate, NH(3) and urea. 6. In the presence of ethanol the balance of both alanine carbon and alanine nitrogen showed substantial deficits. These deficits were largely accounted for by the formation of aspartate and glutamine, the formation of which was increased two- to three-fold. 7. When alanine was replaced by lactate plus NH(4)Cl, ethanol also caused a major accumulation of amino acids, especially of aspartate and alanine. 8. Earlier apparently discrepant results on the effects of ethanol on gluconeogenesis from alanine are explained by the fact that under well defined conditions ethanol can inhibit, or accelerate, or be without major effect on the rate of gluconeogenesis. 9. It is pointed out that in the synthesis of urea through the ornithine cycle half of the nitrogen must be supplied in the form of asparate and half in the form of carbamoyl phosphate. The accumulation of aspartate and other amino acids suggests that ethanol interferes with the control mechanisms which regulate the stoicheiometric formation of aspartate and carbamoyl phosphate.  相似文献   
992.
Infection by the coronavirus mouse hepatitis virus strain A59 (MHV-A59) requires the release of the viral genome by fusion with the respective target membrane of the host cell. Fusion is mediated by the viral S protein. Here, the entry pathway of MHV-A59 into murine fibroblast cells was studied by independent approaches. Infection of cells assessed by plaque reduction assay was strongly inhibited by lysosomotropic compounds and substances that interfere with clathrin-dependent endocytosis, suggesting that MHV-A59 is taken up via endocytosis and delivered to acidic endosomal compartments. Infection was only slightly reduced in the presence of substances inhibiting proteases of endosomal compartments, precluding that the endocytic uptake is required to activate the fusion potential of the S protein by its cleavage. Fluorescence confocal microscopy of labeled MHV-A59 confirmed that virus is taken up via endocytosis. Bright labeling of intracellular compartments suggests their fusion with the viral envelope. No fusion with the plasma membrane was observed at neutral pH conditions. However, when virus was bound to cells and the pH was lowered to 5.0, we observed a strong labeling of the plasma membrane. Electron microscopy revealed low pH triggered conformational alterations of the S ectodomain. Very likely, these alterations are irreversible because low-pH treatment of viruses in the absence of target membranes caused an irreversible loss of the fusion activity. The results imply that endocytosis plays a major role in MHV-A59 infection and the acidic pH of the endosomal compartment triggers a conformational change of the S protein mediating fusion.  相似文献   
993.
Matrix proteins of mitochondria, hydrogenosomes and mitosomes are typically targeted and translocated into their respective organelles using N-terminal presequences that are subsequently cleaved by a peptidase. Here we characterize a approximately 47 kDa metallopeptidase, from the hydrogenosome-bearing, unicellular eukaryote Trichomonas vaginalis, that contains the active site motif (HXXEHX(76)E) characteristic of the beta subunit of the mitochondrial processing peptidase (MPP) and localizes to hydrogenosomes. The purified recombinant protein, named hydrogenosomal processing peptidase (HPP), is capable of cleaving a hydrogenosomal presequence in vitro, in contrast to MPP which requires both an alpha and beta subunit for activity. T. vaginalis HPP forms an approximately 100 kDa homodimer in vitro and also exists in an approximately 100 kDa complex in vivo. Our phylogenetic analyses support a common origin for HPP and betaMPP and demonstrate that gene duplication gave rise to alphaMPP and betaMPP before the divergence of T. vaginalis and mitochondria-bearing lineages. These data, together with published analyses of MPPs and putative mitosomal processing peptidases, lead us to propose that the length of targeting presequences and the subunit composition of organellar processing peptidases evolved in concert. Specifically, longer mitochondrial presequences may have evolved to require an alpha/beta heterodimer for accurate cleavage, while shorter hydrogenosomal and mitosomal presequences did not.  相似文献   
994.
995.
Most experimental procedures on molluscs are done after acclimatization of wild animals to lab conditions. Similarly, short-term acclimation is often unavoidable in a field survey when biological analysis cannot be done within the day of sample collection. However, acclimatization can affect the general physiological condition and particularly the immune cell responses of molluscs. Our aim was to study the changes in the hemocyte characteristics of the Pacific oyster Crassostrea gigas and the carpet shell clam Ruditapes decussatus acclimated 1 or 2 days under emersed conditions at 14 ± 1 °C and for 1, 2, 7, or 10 days to flowing seawater conditions (submerged) at 9 ± 1 °C, when compared to hemolymph withdrawn from organisms sampled in the field and immediately analyzed in the laboratory (unacclimated). The hemocyte characteristics assessed by flow cytometry were the total (THC) and differential hemocyte count, percentage of dead cells, phagocytosis, and reactive oxygen species (ROS) production. Dead hemocytes were lower in oysters acclimated both in emersed and submerged conditions (1%-5%) compared to those sampled in the field (7%). Compared to oysters, the percentage of dead hemocytes was lower in clams (0.4% vs. 1.1%) and showed a tendency to decrease during acclimatization in both emersed and submerged conditions. In comparison to organisms not acclimated, the phagocytosis of hemocytes decreased in both oysters and clams acclimated under submerged conditions, but was similar in those acclimated in emersed conditions. The ROS production remained stable in both oysters and clams acclimated in emersed conditions, whereas in submerged conditions ROS production did not change in both the hyalinocytes and granulocytes of oysters, but increased in clams. In oysters, the THC decreased when they were acclimated 1 and 2 days in submerged conditions and was mainly caused by a decrease in granulocytes, but the decrease in THC in oysters acclimated 2 days in emersed conditions was caused by a decrease in hyalinocytes and small agranular cells. In clams, the THC was significantly lower in comparison to those not acclimated, regardless of the conditions of the acclimatization. These findings demonstrate that hemocyte characteristics were differentially affected in both species by the tested conditions of acclimatization. The phagocytosis and ROS production in clams and phagocytosis in oysters were not different in those acclimated for 1 day under both conditions, i.e. emersed and submerged, and those sampled in the field (unacclimated). The THC was significantly affected by acclimatization conditions, so the differences between clams and oysters should be considered in studies where important concentrations of hemocytes are required. The difference in the immune response between both species could be related to their habitat (epifaunal vs. infaunal) and their ability of resilience to manipulation and adaptation to captivity. Our results suggest that functional characteristics of hemocytes should be analyzed in both oysters and clams during the first 1 or 2 days, preferably acclimated under emersed rather than submerged conditions.  相似文献   
996.
We investigated the effects of the interaction between flavanols and related procyanidins (dimer to hexamer) with both cell and synthetic membranes, on bilayer fluidity and susceptibility to oxidation. Cocoa derived dimers (0.05 to 1 microg/ml) protected Jurkat T cells from AMVN-mediated oxidation and increased plasma membrane fluidity. These effects occurred in a concentration- and chain length-dependent manner. In liposomes, procyanidins prevented the Fe2+ -induced permeabilization of the membrane. Together, these results support the hypothesis that procyanidins could interact with the polar headgroup of lipids, increasing membrane fluidity and also, preventing the access of molecules that could affect membrane integrity.  相似文献   
997.
998.
U373MG cells constitutively express glutathione S-transferase mu 2 (GSTM2) and exhibit 3H-dopamine uptake, which is inhibited by 2 µM of nomifensine and 15 µM of estradiol. We generated a stable cell line (U373MGsiGST6) expressing an siRNA against GSTM2 that resulted in low GSTM2 expression (26% of wild-type U373MG cells). A significant increase in cell death was observed when U373MGsiGST6 cells were incubated with 50 µM purified aminochrome (18-fold increase) compared with wild-type cells. The incubation of U373MGsiGST6 cells with 75 µM aminochrome resulted in the formation of autophagic vacuoles containing undigested cellular components, as determined using transmission electron microscopy. A significant increase in autophagosomes was determined by measuring endogenous LC3-II, a significant decrease in cell death was observed in the presence of bafilomycin A1, and a significant increase in cell death was observed in the presence of trehalose. A significant increase in LAMP2 immunostaining was observed, a significant decrease in bright red fluorescence of lysosomes with acridine orange was observed, and bafilomycin A1 pretreatment reduced the loss of lysosome acidity. A significant increase in cell death was observed in the presence of lysosomal protease inhibitors. Aggregation of TUBA/α-tubulin (tubulin, α) and SQSTM1 protein accumulation were also observed. Moreover, a significant increase in the number of lipids droplets was observed compared with U373MG cells with normal expression of GSTM2. These results support the notion that GSTM2 is a protective enzyme against aminochrome toxicity in astrocytes and that aminochrome cell death in U373MGsiGST6 cells involves autophagic-lysosomal dysfunction.  相似文献   
999.

Purpose

Physiologic monitors are plagued with alarms that create a cacophony of sounds and visual alerts causing “alarm fatigue” which creates an unsafe patient environment because a life-threatening event may be missed in this milieu of sensory overload. Using a state-of-the-art technology acquisition infrastructure, all monitor data including 7 ECG leads, all pressure, SpO2, and respiration waveforms as well as user settings and alarms were stored on 461 adults treated in intensive care units. Using a well-defined alarm annotation protocol, nurse scientists with 95% inter-rater reliability annotated 12,671 arrhythmia alarms.

Results

A total of 2,558,760 unique alarms occurred in the 31-day study period: arrhythmia, 1,154,201; parameter, 612,927; technical, 791,632. There were 381,560 audible alarms for an audible alarm burden of 187/bed/day. 88.8% of the 12,671 annotated arrhythmia alarms were false positives. Conditions causing excessive alarms included inappropriate alarm settings, persistent atrial fibrillation, and non-actionable events such as PVC''s and brief spikes in ST segments. Low amplitude QRS complexes in some, but not all available ECG leads caused undercounting and false arrhythmia alarms. Wide QRS complexes due to bundle branch block or ventricular pacemaker rhythm caused false alarms. 93% of the 168 true ventricular tachycardia alarms were not sustained long enough to warrant treatment.

Discussion

The excessive number of physiologic monitor alarms is a complex interplay of inappropriate user settings, patient conditions, and algorithm deficiencies. Device solutions should focus on use of all available ECG leads to identify non-artifact leads and leads with adequate QRS amplitude. Devices should provide prompts to aide in more appropriate tailoring of alarm settings to individual patients. Atrial fibrillation alarms should be limited to new onset and termination of the arrhythmia and delays for ST-segment and other parameter alarms should be configurable. Because computer devices are more reliable than humans, an opportunity exists to improve physiologic monitoring and reduce alarm fatigue.  相似文献   
1000.
To clone a pig from somatic cells, we first validated an electrical activation method for use on ovulated oocytes. We then evaluated delayed versus simultaneous activation (DA vs. SA) strategies, the use of 2 nuclear donor cells, and the use of cytoskeletal inhibitors during nuclear transfer. Using enucleated ovulated oocytes as cytoplasts for fetal fibroblast nuclei and transferring cloned embryos into a recipient within 2 h of activation, a 2-h delay between electrical fusion and activation yielded blastocysts more reliably and with a higher nuclear count than did SA. Comparable rates of development using DA were obtained following culture of embryos cloned from ovulated or in vitro-matured cytoplasts and fibroblast or cumulus nuclei. Treatment of cloned embryos with cytochalasin B (CB) postfusion and for 6 h after DA had no impact on blastocyst development as compared with CB treatment postfusion only. Inclusion of a microtubule inhibitor such as nocodozole with CB before and after DA improved nuclear retention and favored the formation of single pronuclei in experiments using a membrane dye to reliably monitor fusion. However, no improvement in blastocyst development was observed. Using fetal fibroblasts as nuclear donor cells, a live cloned piglet was produced in a pregnancy that was maintained by cotransfer of parthenogenetic embryos.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号