首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2970篇
  免费   239篇
  国内免费   1篇
  2022年   24篇
  2021年   41篇
  2020年   32篇
  2019年   25篇
  2018年   34篇
  2017年   40篇
  2016年   61篇
  2015年   117篇
  2014年   114篇
  2013年   188篇
  2012年   209篇
  2011年   208篇
  2010年   152篇
  2009年   136篇
  2008年   170篇
  2007年   148篇
  2006年   153篇
  2005年   134篇
  2004年   134篇
  2003年   131篇
  2002年   139篇
  2001年   53篇
  2000年   49篇
  1999年   54篇
  1998年   44篇
  1997年   39篇
  1996年   28篇
  1995年   18篇
  1994年   35篇
  1993年   35篇
  1992年   38篇
  1991年   28篇
  1990年   29篇
  1989年   28篇
  1988年   31篇
  1987年   28篇
  1986年   23篇
  1985年   26篇
  1984年   28篇
  1983年   14篇
  1982年   22篇
  1981年   14篇
  1980年   16篇
  1979年   22篇
  1978年   18篇
  1977年   10篇
  1976年   12篇
  1975年   11篇
  1974年   10篇
  1972年   9篇
排序方式: 共有3210条查询结果,搜索用时 15 毫秒
941.
942.
CD spectra have been obtained for poly(L -glutamic acid) and poly(L -aspartic acid) as functions of temperature and concentration of cationic detergents. Dodecylammonium chloride induces a coil–helix transition in fully ionized poly(L -glutamic acid). The interaction of the monomeric detergent with the polypeptide is responsible for the conformational transition. The detergent concentration required to produce the transition is independent of temperature. The CD of fully ionized poly(L -aspartic acid) is nearly unaffected by dodecylammonium chloride, in marked contrast to the situation found with poly(L -glutamic acid). However, these results do not imply that dodecylammonium chloride interacts differently with aspartyl and glutamyl residues. The observed results can be accounted for by the well-known fact that the glutamyl residue has a higher helix-forming tendency that the aspartyl residue. Cetyltrimethylammonium chloride destabilizes the helical form of poly(L -glutamic acid). This detergent presents an exception to the usual ability of ionic detergents to promote formation of ordered structures in oppositely charged homopolypeptides.  相似文献   
943.
The search for effective treatments that prevent oxidative stress associated with premature ageing and neurodegenerative diseases is an important area of neurochemical research. As age- and disease-related oxidative stress is frequently associated with mitochondrial dysfunction, amphiphilic antioxidant agents of high stability and selectivity that target these organelles can provide on-site protection. Such an amphiphilic nitrone protected human neuroblastoma cells at low micromolar concentrations against oxidative damage and death induced by exposure to the beta-amyloid peptide, hydrogen peroxide and 3-hydroxykynurenine. Daily administration of the antioxidant at a concentration of only 5 mum significantly increased the lifespan of the individually cultured rotifer Philodina acuticornis odiosa Milne. This compound is unique in its exceptional anti-ageing efficacy, being one order of magnitude more potent than any other compound previously tested on rotifers. The nitrone protected these aquatic animals against the lethal toxicity of hydrogen peroxide and doxorubicin and greatly enhanced their survival when co-administered with these oxidotoxins. These findings indicate that amphiphilic antioxidants have a great potential as neuroprotective agents in preventing the death of cells and organisms exposed to enhanced oxidative stress and damage.  相似文献   
944.
It is generally acknowledged that cutaneous vasodilatation in response to monopolar galvanic current application would result from an axon reflex in primary afferent fibers and the neurogenic inflammation resulting from neuropeptide release. Previous studies suggested participation of prostaglandin (PG) in anodal current-induced cutaneous vasodilatation. Thus the inducible cyclooxygenase (COX) isoform (COX-2), assumed to play a key role in inflammation, should be involved in the synthesis of the PG that is released. Skin blood flow (SkBF) variations induced by 5 min of 0.1-mA monopolar anodal current application were evaluated with laser-Doppler flowmetry on the forearm of healthy volunteers treated with indomethacin (COX-1 and COX-2 inhibitor), celecoxib (COX-2 inhibitor), or placebo. SkBF was indexed as cutaneous vascular conductance (CVC), expressed as percentage of heat-induced maximal CVC (%MVC). Urinalyses were performed to test celecoxib treatment efficiency. No difference was found in CVC values at rest: 14.3 +/- 4.0, 11.9 +/- 3.2, and 10.9 +/- 2.0% MVC after indomethacin, celecoxib, and placebo treatment, respectively. At 10 min after the onset of anodal current application, CVC values were 22.2 +/- 4.9% MVC (not significantly different from rest) with indomethacin, 85.7 +/- 15.3% MVC (P < 0.001 vs. rest) with celecoxib, and 70.4 +/- 13.1% MVC (P < 0.001 vs. rest) with placebo. Celecoxib significantly depressed the urinary prostacyclin metabolite 6-keto-PGF(1alpha) (P < 0.05 vs. placebo). Indomethacin, but not celecoxib, significantly inhibited the anodal current-induced vasodilatation. Thus, although they are assumed to result from an axon reflex in primary afferent fibers and neurogenic inflammation, these results suggest that the early anodal current-induced vasodilatation is mainly dependent on COX-1-induced PG synthesis.  相似文献   
945.
Rapid and accurate identification and speciation of staphylococci clinical isolates is important for predicting medical pathology. We evaluated the ability of a high-density DNA probe array based on 16S rDNA sequences to identify Staphylococcus species. Correct identification was observed for 185 out of the 201 strains (92%). Of the 33 tested species, the array was able to correctly identify 30 of them. The total time required for identification of 4 isolates was 5 h. Such a tool represents a powerful method for routine microbiological diagnostic as well as for epidemiological studies.  相似文献   
946.
Different fragments of the hemocyanin (Hc) isolated from the gastropod Rapana venosa containing a single functional unit (50 kDa), two functional units (100 kDa) and three functional units (150 kDa) were obtained in a dissociating buffer in the presence of Zn2+ and purified to homogeneity. Their conformations in solution were studied by means of small angle X-ray scattering (SAXS) and compared with those of the corresponding fragments previously obtained by limited proteolysis [Arch. Biochem. Biophys., 2000, 373, 154]. The overall shape of each fragment was determined using an ab initio approach. The crystal structures of the functional unit e from the same Hc and from another molluscan Hc (Octopus dofleini) were used to model 100 and 150 kDa fragments using rigid body movements to fit the corresponding SAXS patterns. Interesting differences were observed between the functional unit organization in the low-molecular mass fragments according to the two preparation methods, suggesting different localizations within the 11S functional subunit.  相似文献   
947.
The vacuolating cytotoxin VacA is a major virulence factor of Helicobacter pylori, a bacterium responsible for gastroduodenal ulcers and cancer. VacA associates with lipid rafts, is endocytosed, and reaches the late endocytic compartment where it induces vacuolation. We have investigated the endocytic and intracellular trafficking pathways used by VacA, in HeLa and gastric AGS cells. We report here that VacA was first bound to plasma-membrane domains localized above F-actin structures that were controlled by the Rac1 GTPase. VacA was subsequently pinocytosed by a clathrin-independent mechanism into cell peripheral early endocytic compartments lacking caveolin 1, the Rab5 effector early endosomes antigen-1 (EEA1) and transferrin. These compartments took up fluid-phase (as evidenced by the accumulation of fluorescent dextran) and glycosylphosphatidylinositol-anchored proteins (GPI-APs). VacA pinocytosis was controlled by Cdc42 and did not require cellular tyrosine kinases, dynamin 2, ADP-ribosylating factor 6, or RhoA GTPase activities. VacA was subsequently routed to EEA1-sorting endosomes and then sorted to late endosomes. During all these different endocytic steps, VacA was continuously associated with detergent resistant membrane domains. From these results we propose that VacA might be a valuable probe to study raft-associated molecules, pinocytosed by a clathrin-independent mechanism, and routed to the degradative compartment.  相似文献   
948.
Recent studies have shown that F2-isoprostane levels-a marker for lipid peroxidation-are increased in human renovascular hypertension but not in essential hypertension. Angiotensin II specifically stimulates F2-isoprostane production through activation of the AT1 receptor. The objective was to determine whether there is a relationship between the level of oxidative stress evaluated by measuring urinary F2-isoprostanes levels and polymorphisms of genes involved in the renine angiotensin aldosterone system (RAAS) regulation. The population studied included 100 subjects, 65 of whom were healthy normotensives; the other 35 were suffering from untreated, essential hypertension. The polymorphisms studied concern the genes encoding angiotensin I-converting enzyme (ACE/in16del/ins), angiotensin II receptor type I (AGTR1/A+39C[A+1166C] and AGTR1/A-153G), angiotensinogen (AGT/M235T), and aldosterone synthase (CYP11B2/T344C). Oxidative stress was evaluated by measuring urinary F2-isoprostanes levels. The characteristics of the population were as follows: men/women = 46/56; age = 50 +/- 10 years; BMI = 24 +/- 3 kg/m2; SBP = 131.7 +/- 17.2 mm Hg; DBP = 84.6 +/- 10.4 mm Hg. In univariate analysis, urinary F2-isoprostane levels were significantly lower in the presence of the G allele of AGTR1/A-153G (56 +/- 17 vs 76 +/- 39 pmol/mmol creatinine; P < 0.001, and P < 0.01 after Bonferroni correction for 10 tests). In multivariate analysis, taking into account BP, age, gender, BMI, plasma glucose, and total cholesterol, the G allele of AGTR1/A-153G is linked independently to urinary F2-isoprostanes level (P < 0.01). Our data suggest that F2-isoprostane level depends at least in part on the A-153G polymorphism of the angiotensin II AT1 receptor gene. The clinical and prognostic relevance of this polymorphism requires further investigation.  相似文献   
949.
Several chemokines or chemokine receptors are involved in atherogenesis. CCR1 is expressed by macrophages and lymphocytes, two major cell types involved in the progression of atherosclerosis, and binds to lesion-expressed ligands. We examined the direct role of the blood-borne chemokine receptor CCR1 in atherosclerosis by transplanting bone marrow cells from either CCR1+/+ or CCR1-/- mice into low-density lipoprotein-receptor (LDLr)-deficient mice. After exposure to an atherogenic diet for 8 weeks, no differences in fatty streak size or composition were detected between the 2 groups. After 12 weeks of atherogenic diet, however, an unexpected 70% increase in atherosclerotic lesion size in the thoracic aorta was detected in the CCR1-/- mice, accompanied by a 37% increase in the aortic sinus lesion area. CCR1-/- mice showed enhanced basal and concanavalin A-stimulated IFN-gamma production by spleen T cells and enhanced plaque inflammation. In conclusion, blood-borne CCR1 alters the immuno-inflammatory response in atherosclerosis and prevents excessive plaque growth and inflammation.  相似文献   
950.
Agonist-induced conformational changes in the ligand-binding domains (LBD) of glutamate receptor ion channels provide the driving force for molecular rearrangements that mediate channel opening and subsequent desensitization. The resulting regulated transmembrane ion fluxes form the basis for most excitatory neuronal signaling in the brain. Crystallographic analysis of the GluR2 LBD core has revealed a ligand-binding cleft located between two lobes. Channel antagonists stabilize an open cleft, whereas agonists stabilize a closed cleft. The crystal structure of the apo form is similar to the antagonist-bound, open state. To understand the conformational behavior of the LBD in the absence of crystal lattice constraints, and thus better to appreciate the thermodynamic constraints on ligand binding, we have undertaken a solution x-ray scattering study using two different constructs encoding either the core or an extended LBD. In agreement with the GluR2 crystal structures, the LBD is more compact in the presence of agonist than it is in the presence of antagonist. However, the time-averaged conformation of the ligand-free core in solution is intermediate between the open, antagonist-bound state and the closed, agonist-bound state, suggesting a conformational equilibrium. Addition of peptide moieties that connect the core domain to the other functional domains in each channel subunit appears to constrain the conformational equilibrium in favor of the open state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号