首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2723篇
  免费   248篇
  国内免费   1篇
  2023年   9篇
  2022年   24篇
  2021年   40篇
  2020年   37篇
  2019年   28篇
  2018年   44篇
  2017年   49篇
  2016年   56篇
  2015年   117篇
  2014年   132篇
  2013年   189篇
  2012年   199篇
  2011年   202篇
  2010年   135篇
  2009年   138篇
  2008年   157篇
  2007年   154篇
  2006年   145篇
  2005年   137篇
  2004年   125篇
  2003年   138篇
  2002年   134篇
  2001年   45篇
  2000年   29篇
  1999年   44篇
  1998年   37篇
  1997年   35篇
  1996年   24篇
  1995年   18篇
  1994年   25篇
  1993年   33篇
  1992年   28篇
  1991年   23篇
  1990年   23篇
  1989年   19篇
  1988年   21篇
  1987年   21篇
  1986年   16篇
  1985年   18篇
  1984年   24篇
  1983年   9篇
  1982年   12篇
  1981年   10篇
  1980年   8篇
  1979年   15篇
  1977年   5篇
  1974年   4篇
  1973年   4篇
  1971年   4篇
  1967年   6篇
排序方式: 共有2972条查询结果,搜索用时 31 毫秒
991.
N-glycosylation, a major co- and post-translational event in the synthesis of proteins in eukaryotes, is unknown in aquatic photosynthetic microalgae. In this paper, we describe the N-glycosylation pathway in the diatom Phaeodactylum tricornutum. Bio-informatic analysis of its genome revealed the presence of a complete set of sequences potentially encoding for proteins involved in the synthesis of the lipid-linked Glc(3)Man(9)GlcNAc(2)-PP-dolichol N-glycan, some subunits of the oligosaccharyltransferase complex, as well as endoplasmic reticulum glucosidases and chaperones required for protein quality control and, finally, the α-mannosidase I involved in the trimming of the N-glycan precursor into Man-5 N-glycan. Moreover, one N-acetylglucosaminyltransferase I, a Golgi glycosyltransferase that initiates the synthesis of complex type N-glycans, was predicted in the P. tricornutum genome. We demonstrated that this gene encodes for an active N-acetylglucosaminyltransferase I, which is able to restore complex type N-glycans maturation in the Chinese hamster ovary Lec1 mutant, defective in its endogeneous N-acetylglucosaminyltransferase I. Consistent with these data, the structural analyses of N-linked glycans demonstrated that P. tricornutum proteins carry mainly high mannose type N-glycans ranging from Man-5 to Man-9. Although representing a minor glycan population, paucimannose N-glycans were also detected, suggesting the occurrence of an N-acetylglucosaminyltransferase I-dependent maturation of N-glycans in this diatom.  相似文献   
992.
993.
Fruit development is a highly complex process, which involves major changes in plant metabolism leading to cell growth and differentiation. Changes in cell wall composition and structure play a major role in modulating cell growth. We investigated the changes in cell wall composition and the activities of associated enzymes during the dry fruit development of the model plant Arabidopsis thaliana. Silique development is characterized by several specific phases leading to fruit dehiscence and seed dispersal. We showed that early phases of silique growth were characterized by specific changes in non-cellulosic sugar content (rhamnose, arabinose, xylose, galactose and galacturonic acid). Xyloglucan oligosaccharide mass profiling further showed a strong increase in O-acetylated xyloglucans over the course of silique development, which could suggest a decreased capacity of xyloglucans to be associated with each other or to cellulose. The degree of methylesterification, mediated by the activity of pectin methylesterases (PMEs), decreased over the course of silique growth and dehiscence. The major changes in cell wall composition revealed by our analysis suggest that it could be major determinants in modulating cell wall rheology leading to growth or growth arrest.  相似文献   
994.
Szulkin M  David P 《Molecular ecology》2011,20(19):3949-3952
Genome-wide heterozygosity inferred from neutral markers such as microsatellites is often expected to (i) reflect individual inbreeding and (ii) covary positively with fitness, generating positive heterozygosity-fitness correlations (HFCs). The often forgotten other end of the inbreeding-outbreeding continuum is outbreeding depression: past a certain degree of heterozygosity, heterozygotes tend to have lower fitness than homozygotes. Outbreeding depression arises from the breakup of co-adapted gene complexes and/or the introgression of nonlocally adapted genes. Provided that a correlation in heterozygosity exists across loci, outbreeding depression will be reflected in negative HFCs. In this issue, Olano-Marin et al. (2011a) describe negative heterozygosity-fitness correlations (HFCs) in blue tits Cyanistes caeruleus (Fig. 1), whereby heterozygosity has a significant, negative effect on female hatching success and recruitment. This study, together with a similar study by the same authors published in Evolution (Olano-Marin et al. 2011b), forms an original contribution in two respects. First, in the same population, positive and negative HFCs were recorded, revealing both inbreeding and outbreeding depression depending on the trait studied (whereby both processes were reliant on unknown, and possibly different, sets of coding loci). Second, a large number of microsatellite markers were split into two functional groups: microsatellite markers were either designed using zebra finch expressed sequence tags (ESTs) or derived using traditional cloning methods and presumed to be neutral. Contrasting large classes of loci and their varying levels of polymorphism, rather than looking for one locus that would stand out among tens of randomly selected markers, pave the way for a more elegant and powerful approach to explore how HFCs vary across traits and among regions of the genome. [Figure: see text].  相似文献   
995.
PTPN4, a human tyrosine phosphatase, protects cells against apoptosis. This protection could be abrogated by targeting the PDZ domain of this phosphatase with a peptide mimicking the C-terminal sequence of the G protein of an attenuated rabies virus strain. Here, we demonstrate that glioblastoma death is triggered upon intracellular delivery of peptides, either from viral origin or from known endogenous ligands of PTPN4-PDZ, such as the C terminus sequence of the glutamate receptor subunit GluN2A. The killing efficiency of peptides closely reflects their affinities for the PTPN4-PDZ. The crystal structures of two PTPN4-PDZ/peptide complexes allow us to pinpoint the main structural determinants of binding?and to synthesize a peptide of high affinity for PTPN4-PDZ enhancing markedly its cell death capacity. These results allow us to propose a potential mechanism for the efficiency of peptides and provide a target and a robust framework for the design of new pro-death compounds.  相似文献   
996.
Aspergillus tamarii contains an endogenous lactonization pathway which can transform progesterone to testololactone in high yield through a sequential four step enzymatic pathway. In this pathway testosterone is formed which primarily undergoes oxidation of the C-17β-alcohol to a C-17 ketone but, can also enter a minor hydroxylation pathway where 11β-hydroxytestosterone is produced. It was recently demonstrated that this hydroxylase could monohydroxylate 3β-hydroxy substituted saturated steroidal lactones in all four possible binding orientations (normal, reverse, inverted normal, inverted reverse) on rings B and C of the steroid nucleus. It was therefore of interest to determine the fate of a series of 3α-substituted steroidal analogues to determine stereochemical effect on transformation. Hydroxylation on the central rings was found to be restricted to the 11β-position (normal binding), indicating that the 3α-stereochemistry removes freedom of binding orientation within the hydroxylase. The only other hydroxylation observed was at the 1β-position. Interestingly the presence of this functional group did not prevent lactonization of the C-17 ketone. In contrast the presence of the 11β-hydroxyl completely inhibited Baeyer–Villiger oxidation, a result which again demonstrates that single functional groups can exert significant control over metabolic handling of steroids in this organism. This may also explain why lactonization of 11β-hydroxytestosterone does not occur. Lactonization of the C-17 ketone was not significantly affected by the 3α-alcohol with significant yields achieved (53%). Interestingly a time course experiment demonstrated that the presence of the 3α-acetate inhibited the Baeyer–Villiger monooxygenase with its activity being observed 24 h later than non-acetate containing analogues. Apart from oxidative transformations observed a minor reductive pathway was revealed with the C-17 ketone being reduced to a C-17β-alcohol for the first time in this organism.  相似文献   
997.
Ceruloplasmin is a copper protein found in vertebrate plasma, which belongs to the family of multicopper oxidases. Like transferrin of the blood plasma, lactoferrin, the iron-containing protein of human milk, saliva, tears, seminal plasma and of neutrophilic leukocytes tightly binds two ferric ions. Human lactoferrin and ceruloplasmin have been previously shown to interact both in vivo and in vitro forming a complex. Here we describe a study of the conformation of the human lactoferrin/ceruloplasmin complex in solution using small angle X-ray scattering. Our ab initio structural analysis shows that the complex has a 1:1 stoichiometry and suggests that complex formation occurs without major conformational rearrangements of either protein. Rigid-body modeling of the mutual arrangement of proteins in the complex essentially yields two families of solutions. Final discrimination is possible when integrating in the modeling process extra information translating into structural constraints on the interaction between the two partners.  相似文献   
998.
1. A recurrent question in ecology is the influence of environmental factors, particularly nutrients and climatic variables, on community structure and functioning, and their interaction with internal community processes (e.g. competition). 2. Perialpine lakes have been subject to two main kinds of human-induced changes over the last 50 years: eutrophication-reoligotrophication, represented by lake-specific changes in total phosphorus concentration (TP), and long-term global climatic change, captured by average winter temperature (AWT). 3. Changes in fish communities (abundance of seven species from fishery data) in 11 Perialpine lakes during 31 years (1970-2000) were investigated in relation to variation in TP and AWT using models incorporating the effects of fish maturation age, and potentially discriminating effects on adult survival and recruitment. 4. We show that phosphorus concentration affects fish abundance in species-specific ways. These effects are mediated by recruitment rather than by adult survival. Phosphorus effects are probably modulated by interspecific interactions, as increasing TP enhances total community biomass, which in turn is either positively or negatively associated with species abundance depending on species position in trophic chains. 5. Climatic change has very little effect on fish abundances, which is not consistent with the prediction of larger changes in species near their southern distribution boundary. 6. We propose several hypotheses to account for those findings, and place our study in the wider framework of community ecology.  相似文献   
999.
Conflicting results have been reported for the rate and extent of cell death during a prolonged stationary phase. It is shown here that the viability of wild-type cells (MG1655) could decrease >or=10(8)-fold between days 1 and 14 and between days 1 and 6 of incubation under aerobic and anaerobic phosphate (P(i)) starvation conditions, respectively, whereas the cell viability decreased moderately under ammonium and glucose starvation conditions. Several lines of evidence indicated that the loss of viability of P(i)-starved cells resulted primarily from the catabolism of glucose into organic acids through pyruvate oxidase (PoxB) and pyruvate-formate lyase (PflB) under aerobic and anaerobic conditions, respectively. Weak organic acids that are excreted into the medium can reenter the cell and dissociate into protons and anions, thereby triggering cell death. However, P(i)-starved cells were efficiently protected by the activity of the inducible GadABC glutamate-dependent acid resistance system. Glutamate decarboxylation consumes one proton, which contributes to the internal pH homeostasis, and removes one intracellular negative charge, which might compensate for the accumulated weak acid anions. Unexpectedly, the tolerance of P(i)-starved cells to fermentation acids was markedly increased as a result of the activity of the inducible CadBA lysine-dependent acid resistance system that consumes one proton and produces the diamine cadaverine. CadA plays a key role in the defense of Salmonella at pH 3 but was thought to be ineffective in Escherichia coli since the protection of E. coli challenged at pH 2.5 by lysine is much weaker than the protection by glutamate. CadA activity was favored in P(i)-starved cells probably because weak organic acids slowly reenter cells fermenting glucose. Since the environmental conditions that trigger the death of P(i)-starved cells are strikingly similar to the conditions that are thought to prevail in the human colon (i.e., a combination of low levels of P(i) and oxygen and high levels of carbohydrates, inducing the microbiota to excrete high levels of organic acids), it is tempting to speculate that E. coli can survive in the gut because of the activity of the GadABC and CadBA glutamate- and lysine-dependent acid resistance systems.  相似文献   
1000.
The bacterial response to stress is controlled by two proteins, RelA and SpoT. RelA generates the alarmone (p)ppGpp under amino acid starvation, whereas SpoT is responsible for (p)ppGpp hydrolysis and for synthesis of (p)ppGpp under a variety of cellular stress conditions. It is widely accepted that RelA is associated with translating ribosomes. The cellular location of SpoT, however, has been controversial. SpoT physically interacts with the ribosome-associated GTPase CgtA, and we show here that, under an optimized salt condition, SpoT is also associated with a pre-50S particle. Analysis of spoT and cgtA mutants and strains overexpressing CgtA suggests that the ribosome associations of SpoT and CgtA are mutually independent. The steady-state level of (p)ppGpp is increased in a cgtA mutant, but the accumulation of (p)ppGpp during amino acid starvation is not affected, providing strong evidence that CgtA regulates the (p)ppGpp level during exponential growth but not during the stringent response. We show that CgtA is not associated with pre-50S particles during amino acid starvation, indicating that under these conditions in which (p)ppGpp accumulates, CgtA is not bound either to the pre-50S particle or to SpoT. We propose that, in addition to its role as a 50S assembly factor, CgtA promotes SpoT (p)ppGpp degradation activity on the ribosome and that the loss of CgtA from the ribosome is necessary for maximal (p)ppGpp accumulation under stress conditions. Intriguingly, we found that in the absence of spoT and relA, cgtA is still an essential gene in Escherichia coli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号