首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2057篇
  免费   153篇
  2023年   6篇
  2022年   15篇
  2021年   27篇
  2020年   23篇
  2019年   17篇
  2018年   31篇
  2017年   25篇
  2016年   37篇
  2015年   88篇
  2014年   82篇
  2013年   145篇
  2012年   147篇
  2011年   175篇
  2010年   103篇
  2009年   114篇
  2008年   140篇
  2007年   114篇
  2006年   123篇
  2005年   106篇
  2004年   100篇
  2003年   107篇
  2002年   117篇
  2001年   26篇
  2000年   28篇
  1999年   31篇
  1998年   35篇
  1997年   25篇
  1996年   14篇
  1995年   11篇
  1994年   19篇
  1993年   21篇
  1992年   14篇
  1991年   15篇
  1990年   15篇
  1989年   10篇
  1988年   13篇
  1987年   13篇
  1986年   7篇
  1985年   13篇
  1984年   9篇
  1983年   5篇
  1982年   8篇
  1981年   6篇
  1980年   5篇
  1979年   2篇
  1977年   11篇
  1973年   3篇
  1969年   1篇
  1967年   2篇
  1966年   1篇
排序方式: 共有2210条查询结果,搜索用时 15 毫秒
991.
Yersinia ruckeri is a gram-negative pathogen causing enteric redmouth disease in salmonids. Previous studies have reported that Y. ruckeri harbors an ampC gene that is expressed at low level. In this present work, the entire ampC gene of Y. ruckeri was cloned and expressed in Escherichia coli. The AmpC enzyme confers resistance to aminopenicillins and narrow-spectrum cephalosporins, which fit well with the kinetic properties of the purified enzyme. Phylogenetic analysis showed that YRC-1 did not share significant sequence identity with known plasmid-mediated or chromosomal AmpC enzymes. This work provides further evidence that fish-pathogenic gram-negative rod species may constitute a reservoir of antibiotic resistance genes.  相似文献   
992.
The heterologous expression and purification of membrane proteins represent major limitations for their functional and structural analysis. Here we describe a new method of incorporation of transmembrane proteins in planar lipid bilayer starting from 1 pmol of solubilized proteins. The principle relies on the direct incorporation of solubilized proteins into a preformed planar lipid bilayer destabilized by dodecyl-beta-maltoside or dodecyl-beta-thiomaltoside, two detergents widely used in membrane biochemistry. Successful incorporations are reported at 20 degrees C and at 4 degrees C with three bacterial photosynthetic multi-subunit membrane proteins. Height measurements by atomic force microscopy (AFM) of the extramembraneous domains protruding from the bilayer demonstrate that proteins are unidirectionally incorporated within the lipid bilayer through their more hydrophobic domains. Proteins are incorporated at high density into the bilayer and on incubation diffuse and segregate into protein close-packing areas. The high protein density allows high-resolution AFM topographs to be recorded and protein subunits organization delineated. This approach provides an alternative experimental platform to the classical methods of two-dimensional crystallization of membrane proteins for the structural analysis by AFM. Furthermore, the versatility and simplicity of the method are important intrinsic properties for the conception of biosensors and nanobiomaterials involving membrane proteins.  相似文献   
993.
The sphingolipid ceramide induces macroautophagy (here called autophagy) and cell death with autophagic features in cancer cells. Here we show that overexpression of sphingosine kinase 1 (SK1), an enzyme responsible for the production of sphingosine 1-phosphate (S1P), in MCF-7 cells stimulates autophagy by increasing the formation of LC3-positive autophagosomes and the rate of proteolysis sensitive to the autophagy inhibitor 3-methyladenine. Autophagy was blocked in the presence of dimethylsphingosine, an inhibitor of SK activity, and in cells expressing a catalytically inactive form of SK1. In SK1(wt)-overexpressing cells, however, autophagy was not sensitive to fumonisin B1, an inhibitor of ceramide synthase. In contrast to ceramide-induced autophagy, SK1(S1P)-induced autophagy is characterized by (i) the inhibition of mammalian target of rapamycin signaling independently of the Akt/protein kinase B signaling arm and (ii) the lack of robust accumulation of the autophagy protein Beclin 1. In addition, nutrient starvation induced both the stimulation of autophagy and SK activity. Knocking down the expression of the autophagy protein Atg7 or that of SK1 by siRNA abolished starvation-induced autophagy and increased cell death with apoptotic hallmarks. In conclusion, these results show that SK1(S1P)-induced autophagy protects cells from death with apoptotic features during nutrient starvation.  相似文献   
994.
CadA, the Cd(2+)-ATPase from Listeria monocytogenes, belongs to the Zn(2+)/Cd(2+)/Pb(2+)-ATPase bacterial subfamily of P(1B)-ATPases that ensure detoxification of the bacteria. Whereas it is the major determinant of Listeria resistance to Cd(2+), CadA expressed in Saccharomyces cerevisiae severely decreases yeast tolerance to Cd(2+) (Wu, C. C., Bal, N., Pérard, J., Lowe, J., Boscheron, C., Mintz, E., and Catty, P. (2004) Biochem. Biophys. Res. Commun. 324, 1034-1040). This phenotype, which reflects in vivo Cd(2+)-transport activity, was used to select from 33 point mutations, shared out among the eight transmembrane (TM) segments of CadA, those that affect the activity of the protein. Six mutations affecting CadA were found: M149A in TM3; E164A in TM4; C354A, P355A, and C356A in TM6; and D692A in TM8. Functional studies of the six mutants produced in Sf9 cells revealed that Cys(354) and Cys(356) in TM6 as well as Asp(692) in TM8 and Met(149) in TM3 could participate at the Cd(2+)-binding site(s). In the canonical Cys-Pro-Cys motif of P(1B)-ATPases, the two cysteines act at distinct steps in the transport mechanism, Cys(354) being directly involved in Cd(2+) binding, while Cys(356) seems to be required for Cd(2+) occlusion. This confirms an earlier observation that the two equivalent Cys of Ccc2, the yeast Cu(+)-ATPase, also act at different steps. In TM4, Glu(164), which is conserved among P(1B)-ATPases, may be required for Cd(2+) release. Finally, analysis of the role of Cd(2+) in the phosphorylation from ATP and from P(i) of the mutants suggests that two Cd(2+) ions are involved in the reaction cycle of CadA.  相似文献   
995.
Plant NBS-LRR proteins: adaptable guards   总被引:2,自引:0,他引:2  
The majority of disease resistance genes in plants encode nucleotide-binding site leucine-rich repeat (NBS-LRR) proteins. This large family is encoded by hundreds of diverse genes per genome and can be subdivided into the functionally distinct TIR-domain-containing (TNL) and CC-domain-containing (CNL) subfamilies. Their precise role in recognition is unknown; however, they are thought to monitor the status of plant proteins that are targeted by pathogen effectors.  相似文献   
996.
997.
We studied patterns of variation in species composition of flea assemblages on small mammals across different habitats of Slovakia and compared flea species composition within and across host species among habitats. We asked (1) how variable the composition of flea assemblages is among different populations of the same host occurring in different habitats and (2) whether the composition of flea assemblages in a habitat is affected either by species composition of hosts or by environmental affinities of this habitat. Between-habitat similarity in flea species composition increased with an increase in the similarity in host species composition. Species richness of flea assemblages of a host species correlated positively with mean number of cohabitating host species but not with the number of habitats occupied by a host species. Results of the ordination of flea collections from each individual host demonstrated that the first five principal components explained most of the variance in species composition of flea assemblages. The segregation between rodent and insectivore flea assemblages was easily discerned from the ordination diagram when flea assemblages were plotted according to their hosts. When flea assemblages were plotted according to their habitat affinities, the distinction of habitats based on variation in flea composition was not as clear. The results of ANOVA of each principal component showed the significant effect of both host species and habitat type. The variation in each principal component was explained better by the factor of host species compared with the factor of habitat type. Multidimensional scaling of flea assemblages within host species across habitats demonstrated that among-habitat variation in flea composition was manifested differently in different hosts.  相似文献   
998.
Light and temperature are potent environmental signals used to synchronize the circadian oscillator with external time and photoperiod. Phytochrome and cryptochrome photoreceptors integrate light quantity and quality to modulate the pace and phase of the clock. PHYTOCHROME B (phyB) controls period length in red light as well as the phase of the clock in white light. phyB interacts with ARABIDOPSIS RESPONSE REGULATOR4 (ARR4) in a light-dependent manner. Accordingly, we tested ARR4 and other members of the type-A ARR family for roles in clock function and show that ARR4 and its closest relative, ARR3, act redundantly in the Arabidopsis thaliana circadian system. Loss of ARR3 and ARR4 lengthens the period of the clock even in the absence of light, demonstrating that they do so independently of active phyB. In addition, in white light, arr3,4 mutants show a leading phase similar to phyB mutants, suggesting that circadian light input is modulated by the interaction of phyB with ARR4. Although type-A ARRs are involved in cytokinin signaling, the circadian defects appear to be independent of cytokinin, as exogenous cytokinin affects the phase but not the period of the clock. Therefore, ARR3 and ARR4 are critical for proper circadian period and define an additional level of regulation of the circadian clock in Arabidopsis.  相似文献   
999.
1000.
The reactive center loop (RCL) of serpins plays an essential role in the inhibition mechanism acting as a substrate for their target proteases. Changes within the RCL sequence modulate the specificity and reactivity of the serpin molecule. Recently, we reported the construction of alpha1-antichymotrypsin (ACT) variants with high specificity towards human kallikrein 2 (hK2) [Cloutier SM, Kündig C, Felber LM, Fattah OM, Chagas JR, Gygi CM, Jichlinski P, Leisinger HJ & Deperthes D (2004) Eur J Biochem271, 607-613] by changing amino acids surrounding the scissile bond of the RCL and obtained specific inhibitors towards hK2. Based on this approach, we developed highly specific recombinant inhibitors of human kallikrein 14 (hK14), a protease correlated with increased aggressiveness of prostate and breast cancers. In addition to the RCL permutation with hK14 phage display-selected substrates E8 (LQRAI) and G9 (TVDYA) [Felber LM, Borgo?o CA, Cloutier SM, Kündig C, Kishi T, Chagas JR, Jichlinski P, Gygi CM, Leisinger HJ, Diamandis EP & Deperthes D (2005) Biol Chem386, 291-298], we studied the importance of the scaffold, serpins alpha1-antitrypsin (AAT) or ACT, to confer inhibitory specificity. All four resulting serpin variants ACT(E8), ACT(G9), AAT(E8) and AAT(G9) showed hK14 inhibitory activity and were able to form covalent complex with hK14. ACT inhibitors formed more stable complexes with hK14 than AAT variants. Whereas E8-based inhibitors demonstrated a rather relaxed specificity reacting with various proteases with trypsin-like activity including several human kallikreins, the two serpins variants containing the G9 sequence showed a very high selectivity for hK14. Such specific inhibitors might prove useful to elucidate the biological role of hK14 and/or its implication in cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号