首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1993篇
  免费   157篇
  2150篇
  2023年   7篇
  2022年   16篇
  2021年   33篇
  2020年   24篇
  2019年   18篇
  2018年   27篇
  2017年   24篇
  2016年   39篇
  2015年   87篇
  2014年   82篇
  2013年   138篇
  2012年   146篇
  2011年   169篇
  2010年   104篇
  2009年   117篇
  2008年   130篇
  2007年   112篇
  2006年   110篇
  2005年   99篇
  2004年   99篇
  2003年   104篇
  2002年   107篇
  2001年   22篇
  2000年   12篇
  1999年   27篇
  1998年   30篇
  1997年   25篇
  1996年   15篇
  1995年   14篇
  1994年   22篇
  1993年   21篇
  1992年   18篇
  1991年   12篇
  1990年   12篇
  1989年   10篇
  1988年   15篇
  1987年   14篇
  1986年   14篇
  1985年   11篇
  1984年   10篇
  1983年   5篇
  1982年   12篇
  1981年   6篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1972年   2篇
  1966年   2篇
排序方式: 共有2150条查询结果,搜索用时 15 毫秒
101.
The existence of Salmonella enterica serovar Typhimurium viable-but-nonculturable (VBNC) cells is a public health concern since they could constitute unrecognized sources of infection if they retain their pathogenicity. To date, many studies have addressed the ability of S. Typhimurium VBNC cells to remain infectious, but their conclusions are conflicting. An assumption could explain these conflicting results. It has been proposed that infectivity could be retained only temporarily after entry into the VBNC state and that most VBNC cells generated under intense stress could exceed the stage where they are still infectious. Using a Radioselectan density gradient centrifugation technique makes it possible to increase the VBNC-cell/culturable-cell ratio without increasing the exposure to stress and, consequently, to work with a larger proportion of newly VBNC cells. Here, we observed that (i) in the stationary phase, the S. Typhimurium population comprised three distinct subpopulations at 10, 24, or 48 h of culture; (ii) the VBNC cells were detected at 24 and 48 h; (iii) measurement of invasion gene (hilA, invF, and orgA) expression demonstrated that cells are highly heterogeneous within a culturable population; and (iv) invasion assays of HeLa cells showed that culturable cells from the different subpopulations do not display the same invasiveness. The results also suggest that newly formed VBNC cells are either weakly able or not able to successfully initiate epithelial cell invasion. Finally, we propose that at entry into the stationary phase, invasiveness may be one way for populations of S. Typhimurium to escape stochastic alteration leading to cell death.Like several readily culturable pathogenic bacterial species, Salmonella enterica has been shown to enter into a viable-but-nonculturable (VBNC) state in response to environmental stresses (25, 33). In this state, cells display integrity and activities but escape detection by conventional culture-based monitoring (24). The physiological significance of this phenotype is unclear: some authors have proposed that it is part of an adaptive response aimed at long-term survival under adverse conditions (22, 32); others argue that it is a consequence of stochastic cellular deterioration and that VBNC cells are on their way to death (4, 10, 12, 23). In any case, the existence of VBNC pathogens is a public health concern since they may constitute unrecognized sources of infection if they retain their pathogenicity.To date, many studies have addressed the ability of VBNC pathogens to remain infectious, but the conclusions of some investigators are conflicting (15, 36). In vitro experiments have shown that VBNC cells of Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Oranienburg can recover their culturability (13, 27, 30, 31). This phenomenon, called resuscitation, confirms that at least some VBNC cells ultimately remain able to multiply and are therefore potentially infectious. On the other hand, most in vivo studies ruled out the ability of S. Typhimurium VBNC cells to initiate infection in mice and chicken or to resuscitate during their passage in the animal gut (6, 17, 34, 35). However, one study reported evidence of the maintenance of pathogenicity by VBNC cells of S. Oranienburg in a model of morphine-immunosuppressed mice (1). An assumption could explain these apparently opposite results. It has been proposed that infectivity could be retained only temporarily after entry into the VBNC state (8, 19, 26). Experiments intended for testing the ability of VBNC cells to retain their pathogenicity cannot be fully conclusive if the inocula still contain culturable cells. Therefore, all previously published animal experiments with S. Typhimurium were conducted on populations with VBNC-cell/culturable-cell ratios around 10,000:1. Such populations were obtained after strong exposure to stress, either under intense stressing factors for a short period (e.g., germicidal UV-C for 2 min [6]) or under mild stressing factors for a long period (e.g., starvation for a minimum of 1 week [35]). In such populations, most VBNC cells could exceed the stage where they are still infectious, and the negative outcomes of infection studies could actually reflect their inability to specifically address the fraction of recent VBNC cells.A Radioselectan density gradient centrifugation technique was shown to fractionate stationary-phase populations of Escherichia coli into two subpopulations (10, 12, 18). Interestingly, the VBNC cells formed during a 48-h E. coli culture were specifically recovered in the high-density (HD) subpopulation (12). This technique thus gives the opportunity to increase the VBNC-cell/culturable-cell ratio without increasing exposure to stress and, consequently, to work with a larger proportion of cells having recently entered the VBNC state.Here, this technique was used to discriminate different stationary-phase S. Typhimurium subpopulations. We further investigated the invasiveness of these cell subpopulations by using both gene expression assays of invasion genes and in vitro invasion tests. Thus, the aim of this study was to assess the invasiveness of the cell subpopulations in accordance with their cellular states.  相似文献   
102.
Metallothionein (MT) response to cadmium (Cd) and zinc (Zn) bioaccumulation after single or combined direct exposure was compared in two freshwater bivalves, Dreissena polymorpha (zebra mussel) and Corbicula fluminea (Asiatic clam). Bivalves were exposed to 0.133 μM Cd and/or 15.3 μM Zn, with metal and MT concentrations analysed in the whole soft body after 1, 3, 10 and 24 days of exposure and compared with controls. Results showed significant increase in MT concentrations in both species exposed to Cd and Cd+Zn with a higher accumulation of the protein compared to the control in D. polymorpha for nevertheless similar Cd levels accumulated with time. Exposure to Zn alone led to a significant increase in MT concentrations only in C. fluminea, whereas there was a lack of MT gene induction in the zebra mussels which was confirmed by MT mRNA quantification in gills (RT-PCR). Mussel mortality after 10 days of exposure to Zn and Cd + Zn is discussed with regard to detoxification mechanisms, which include metallothioneins.  相似文献   
103.
Ubiquitylation of RhoA has emerged as an important aspect of both the virulence of Escherichia coli producing cytotoxic necrotizing factor (CNF) 1 toxin and the establishment of the polarity of eukaryotic cells. Owing to the molecular activity of CNF1, we have investigated the relationship between permanent activation of RhoA catalyzed by CNF1 and subsequent ubiquitylation of RhoA by Smurf1. Using Smurf1-deficient cells and by RNA interference (RNAi)-mediated Smurf1 knockdown, we demonstrate that Smurf1 is a rate-limiting and specific factor of the ubiquitin-mediated proteasomal degradation of activated RhoA. We further show that the cancer cell lines HEp-2, human embryonic kidney 293 and Vero are specifically deficient in ubiquitylation of either activated Rac, Cdc42, or Rho, respectively. In contrast, CNF1 produced the cellular depletion of all three isoforms of Rho proteins in the primary human cell types we have tested. We demonstrate that ectopic expression of Smurf1 in Vero cells, deficient for RhoA ubiquitylation, restores ubiquitylation of the activated forms of RhoA. We conclude here that Smurf1 ubiquitylates activated RhoA and that, in contrast to human primary cell types, some cancer cell lines have a lower ubiquitylation capacity of specific Rho proteins. Thus, both CNF1 and transforming growth factor-beta trigger activated RhoA ubiquitylation through Smurf1 ubiquitin-ligase.  相似文献   
104.
The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPARγ ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPARγ ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPARγ ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPARγ. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPARγ and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.  相似文献   
105.
HeLa cell line stably transfected with the tat gene from human immunodeficiency virus type 1 has a decreased antioxidant potential. In this work, we used this model to investigate the effect of a high glucose level (20 mM) on the glucose induced cytotoxicity and on the antioxidant system. In comparison to cell culture under control medium, HeLa-wild cell cultured under 20 mM glucose did not exhibit necrosis or apoptosis, contrary to HeLa-tat cell presenting a significant increase in necrotic or apoptotic state. Moreover after 48 h culture under high glucose level the HeLa-tat proliferation rate was not higher than the one of HeLa-wild cells. In HeLa-wild cell high glucose level resulted in an induction of glutathione reductase activity in opposition to HeLa-tat cells where no change was observed. High glucose level resulted in 20% increase in GSSG/GSH ratio in HeLa-wild cells and 38% increase in HeLa-tat cells. Moreover, high glucose level resulted in a dramatic cytosolic thiol decrease and an important lipid peroxidation in HeLa-tat cells. No significant change of these two parameters was observed in HeLa-wild cells. In both cell lines, high glucose resulted in an increase of total SOD activity, as a consequence of the increase in Cu,Zn-SOD activity. High glucose did not result in an increase of Mn-SOD activity in both cell lines. As a consequence of tat tranfection Mn-SOD activity was 50% lower in HeLa-tat cells in comparison to HeLa-wild cells. This work emphasizes the importance of the antioxidant system in the glucose induced cytotoxicity.  相似文献   
106.
Wild-type intracellular bacteria deliver DNA into mammalian cells   总被引:4,自引:3,他引:4  
Gene transfer in vitro from intracellular bacteria to mammalian phagocytic and non-phagocytic cells and in vivo in mice has been reported. The bacteria used as DNA delivery vectors were engineered to lyze upon entry in the cell due to impaired cell wall synthesis for Shigella flexneri and invasive Escherichia coli , or production of a phage lysin for Listeria mono- cytogenes . In vivo gene transfer was obtained with attenuated Salmonella typhimurium and resulted in stimulation of mucosal immunity. We report that wild-type intracellular human pathogens, such as L. monocytogenes EGD or LO28 and S. flexneri M90T, mediate efficient in vitro transfer of functional genes into epithelial and macrophage cell lines. A low- efficiency transfer was obtained from strain EGD to mouse peritoneal macrophages. DNA transfer with S. typhimurium was observed only from atten-uated aroA strain SL7207 into COS-1 cell line. As demonstrated by the study of listeriolysin-defective L. monocytogenes or of S. typhimurium SL7207 aroA engineered to secrete listeriolysin, escape of bacteria or of plasmid DNA from the intracytoplasmic vacuole is required for transfer of genetic information to occur.  相似文献   
107.
108.
Sulfate substituents naturally occurring in biomolecules, such as oligosaccharides and polysaccharides, can play a critical role in major physiological functions in plants and animals. We show that laminarin, a beta-1,3 glucan with elicitor activity in tobacco (Nicotiana tabacum), becomes, after chemical sulfation, an inducer of the salicylic acid (SA) signaling pathway in tobacco and Arabidopsis thaliana. In tobacco cell suspensions, the oxidative burst induced by the laminarin sulfate PS3 was Ca2+ dependent but partially kinase independent, whereas laminarin triggered a strickly kinase-dependent oxidative burst. Cells treated with PS3 or laminarin remained fully responsive to a second application of laminarin or PS3, respectively, suggesting two distinct perception systems. In tobacco leaves, PS3, but not laminarin, caused electrolyte leakage and triggered scopoletin and SA accumulation. Expression of different families of Pathogenesis-Related (PR) proteins was analyzed in wild-type and mutant tobacco as well as in Arabidopsis. Laminarin induced expression of ethylene-dependent PR proteins, whereas PS3 triggered expression of ethylene- and SA-dependent PR proteins. In Arabidopsis, PS3-induced PR1 expression was also NPR1 (for nonexpressor of PR genes1) dependent. Structure-activity analysis revealed that (1) a minimum chain length is essential for biological activity of unsulfated as well as sulfated laminarin, (2) the sulfate residues are essential and cannot be replaced by other anionic groups, and (3) moderately sulfated beta-1,3 glucans are active. In tobacco, PS3 and curdlan sulfate induced immunity against Tobacco mosaic virus infection, whereas laminarin induced only a weak resistance. The results open new routes to work out new molecules suitable for crop protection.  相似文献   
109.
Siva-1 is a death domain-containing proapoptotic protein identified as an intracellular ligand of CD27 and of the glucocorticoid-induced TNFR family-related gene, which are two members of the TNFR family expressed on lymphoid cells. Although Siva-1 expression is up-regulated in multiple pathological processes, little is known about the signaling pathway underlying the Siva-induced apoptosis. In this study, we investigated the mechanism of the proapoptotic activity of Siva-1 and an alternative splice form lacking the death domain of Siva-1, Siva-2, in T lymphocytes in which Siva proteins, CD27, and glucocorticoid-induced TNFR family-related gene are primarily expressed. Overexpression of Siva proteins triggers a typical apoptotic process manifested by cell shrinkage and surface exposure of phosphatidylserine, and confirmed by ultrastructural features. Siva-induced apoptosis is related to the CD27-mediated apoptotic pathway and results in activation of both initiator and effector caspases. This pathway involves a mitochondrial step evidenced by activation of Bid and cytochrome c release, and is modulated by overexpression of Bcl-2 or Bcl-x(L). The determinants for Siva-induced apoptosis are not contained within the death domain found in the central part of Siva-1, but rather in both the N-terminal and C-terminal regions shared by both Siva proteins. The N-terminal region also participates in the translocation of both Siva proteins into the nuclear compartment. These results indicate that Siva-1 and Siva-2 mediate apoptosis in T lymphocytes via a caspase-dependent mitochondrial pathway that likely involves both cytoplasmic and nuclear events.  相似文献   
110.
A protease can be defined as an enzyme capable of hydrolyzing peptide bonds. Thus, characterization of a protease involves identification of target peptide sequences, measurement of activities toward these sequences, and determination of kinetic parameters. Biological protease substrates based on fluorescent protein pairs, which allow for use of fluorescence resonance energy transfer (FRET), have been recently developed for in vivo protease activity detection and represent a very interesting alternative to chemical substrates for in vitro protease characterization. Here, we analyze a FRET system consisting of cyan and yellow fluorescent proteins (CFP and YFP, respectively), which are fused by a peptide linker serving as protease substrate. Conditions for CFP-YFP fusion protein production in Escherichia coli and purification of proteins were optimized. FRET between CFP and YFP was found to be optimum at a pH between 5.5 and 10.0, at low concentrations of salt and a temperature superior to 25 degrees C. For efficient FRET to occur, the peptide linker between CFP and YFP can measure up to 25 amino acids. The CFP-substrate-YFP system demonstrated a high degree of resistance to nonspecific proteolysis, making it suitable for enzyme kinetic analysis. As with chemical substrates, substrate specificity of CFP-substrate-YFP proteins was tested towards different proteases and kcat/Km values were calculated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号