首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1986篇
  免费   154篇
  2023年   6篇
  2022年   12篇
  2021年   25篇
  2020年   22篇
  2019年   16篇
  2018年   26篇
  2017年   24篇
  2016年   35篇
  2015年   83篇
  2014年   77篇
  2013年   144篇
  2012年   142篇
  2011年   167篇
  2010年   104篇
  2009年   116篇
  2008年   132篇
  2007年   117篇
  2006年   106篇
  2005年   102篇
  2004年   100篇
  2003年   110篇
  2002年   120篇
  2001年   24篇
  2000年   18篇
  1999年   34篇
  1998年   32篇
  1997年   26篇
  1996年   14篇
  1995年   14篇
  1994年   21篇
  1993年   19篇
  1992年   19篇
  1991年   13篇
  1990年   12篇
  1989年   7篇
  1988年   13篇
  1987年   15篇
  1986年   11篇
  1985年   15篇
  1984年   9篇
  1983年   4篇
  1982年   7篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1974年   5篇
  1973年   2篇
排序方式: 共有2140条查询结果,搜索用时 78 毫秒
981.
Cyclic hypoxia and alterations in oncogenic signaling contribute to switch cancer cell metabolism from oxidative phosphorylation to aerobic glycolysis. A major consequence of up-regulated glycolysis is the increased production of metabolic acids responsible for the presence of acidic areas within solid tumors. Tumor acidosis is an important determinant of tumor progression and tumor pH regulation is being investigated as a therapeutic target. Autophagy is a cellular catabolic pathway leading to lysosomal degradation and recycling of proteins and organelles, currently considered an important survival mechanism in cancer cells under metabolic stress or subjected to chemotherapy. We investigated the response of human melanoma cells cultured in acidic conditions in terms of survival and autophagy regulation. Melanoma cells exposed to acidic culture conditions (7.0 < pH < 6.2) promptly accumulated LC3+ autophagic vesicles. Immunoblot analysis showed a consistent increase of LC3-II in acidic culture conditions as compared with cells at normal pH. Inhibition of lysosomal acidification by bafilomycin A1 further increased LC3-II accumulation, suggesting an active autophagic flux in cells under acidic stress. Acute exposure to acidic stress induced rapid inhibition of the mammalian target of rapamycin signaling pathway detected by decreased phosphorylation of p70S6K and increased phosphorylation of AMP-activated protein kinase, associated with decreased ATP content and reduced glucose and leucine uptake. Inhibition of autophagy by knockdown of the autophagic gene ATG5 consistently reduced melanoma cell survival in low pH conditions. These observations indicate that induction of autophagy may represent an adaptation mechanism for cancer cells exposed to an acidic environment. Our data strengthen the validity of therapeutic strategies targeting tumor pH regulation and autophagy in progressive malignancies.  相似文献   
982.
Septoria tritici blotch caused by the heterothallic ascomycete Mycosphaerella graminicola is currently the most frequent and the most economically damaging disease on wheat worldwide. Five hundred and ten strains of this fungus were sampled from 16 geographical locations representing the major wheat producing areas in France. Multiplex PCR amplification, PCR-RFLP-SSCP screening and sequencing of parts of mating type encoding sequences were performed in order to assess the distribution and molecular polymorphism of the mating type idiomorphs. The two idiomorphs were scored at similar frequencies within all sampled locations. Both mating types were also identified at the leaf spatial scale, on 42% of leaves from which two or three strains were isolated. No correlation was found between distribution of mating types and either host cultivars from which the sampling was carried out or in vitro colony phenotypes observed during the culture of strains on potato dextrose agar (PDA) medium. PCR-RFLP-SSCP assay highlighted only one MAT1-1 strain exhibiting a profile distinct from all other MAT1-1 strains, whereas ten MAT1-2 strains (among which two and four with same profiles, respectively) showed profiles differing from the other MAT1-2 strains. Sequencing revealed that all polymorphisms corresponded to single nucleotide variations and all strains displaying the same single strand conformation polymorphism (SSCP) profiles showed identical nucleotide sequences, thereby confirming the high sensitivity of SSCP. Only two out of the disclosed nucleotide variations were nonsynonymous. This study strongly suggests a large potential for sexual reproduction in the French population of M. graminicola and reports a high conservation of mating type sequences in the fungus at both nucleotide and population levels, with a great difference in molecular variability between the two idiomorphs.  相似文献   
983.
984.

Background

It is believed that the endotoxin lipopolysaccharide (LPS) is implicated in the metabolic perturbations associated with both sepsis and obesity (metabolic endotoxemia). Here we examined the role of inducible nitric oxide synthase (iNOS) in skeletal muscle insulin resistance using LPS challenge in rats and mice as in vivo models of endotoxemia.

Methodology/Principal Findings

Pharmacological (aminoguanidine) and genetic strategies (iNOS−/− mice) were used to counter iNOS induction in vivo. In vitro studies using peroxynitrite (ONOO) or inhibitors of the iNOS pathway, 1400 W and EGCG were conducted in L6 myocytes to determine the mechanism by which iNOS mediates LPS-dependent insulin resistance. In vivo, both pharmacological and genetic invalidation of iNOS prevented LPS-induced muscle insulin resistance. Inhibition of iNOS also prevented insulin resistance in myocytes exposed to cytokine/LPS while exposure of myocytes to ONOO fully reproduced the inhibitory effect of cytokine/LPS on both insulin-stimulated glucose uptake and PI3K activity. Importantly, LPS treatment in vivo and iNOS induction and ONOO treatment in vitro promoted tyrosine nitration of IRS-1 and reduced insulin-dependent tyrosine phosphorylation.

Conclusions/Significance

Our work demonstrates that iNOS-mediated tyrosine nitration of IRS-1 is a key mechanism of skeletal muscle insulin resistance in endotoxemia, and presents nitrosative modification of insulin signaling proteins as a novel therapeutic target for combating muscle insulin resistance in inflammatory settings.  相似文献   
985.

Background

Benign infantile convulsions and paroxysmal dyskinesia are episodic cerebral disorders that can share common genetic bases. They can be co-inherited as one single autosomal dominant trait (ICCA syndrome); the disease ICCA gene maps at chromosome 16p12-q12. Despite intensive and conventional mutation screening, the ICCA gene remains unknown to date. The critical area displays highly complicated genomic architecture and is the site of deletions and duplications associated with various diseases. The possibility that the ICCA syndrome is related to the existence of large-scale genomic alterations was addressed in the present study.

Methodology/Principal Findings

A combination of whole genome and dedicated oligonucleotide array comparative genomic hybridization coupled with quantitative polymerase chain reaction was used. Low copy number of a region corresponding to a genomic variant (Variation_7105) located at 16p11 nearby the centromere was detected with statistical significance at much higher frequency in patients from ICCA families than in ethnically matched controls. The genomic variant showed no apparent difference in size and copy number between patients and controls, making it very unlikely that the genomic alteration detected here is ICCA-specific. Furthermore, no other genomic alteration that would directly cause the ICCA syndrome in those nine families was detected in the ICCA critical area.

Conclusions/Significance

Our data excluded that inherited genomic deletion or duplication events directly cause the ICCA syndrome; rather, they help narrowing down the critical ICCA region dramatically and indicate that the disease ICCA genetic defect lies very close to or within Variation_7105 and hence should now be searched in the corresponding genomic area and its surrounding regions.  相似文献   
986.
987.
988.
Xyloglucan is the dominant hemicellulosic polysaccharide of the primary cell wall of dicotyledonous plants that plays a key role in plant development. It is well established that xyloglucan is assembled within Golgi stacks and transported in Golgi-derived vesicles to the cell wall. It is also known that the biosynthesis of xyloglucan requires the action of glycosyltransferases including α-1,6-xylosyltransferase, β-1,2-galactosyltransferase and α-1,2-fucosyltransferase activities responsible for the addition of xylose, galactose and fucose residues to the side chains. There is, however, a lack of knowledge on how these enzymes are distributed within subcompartments of Golgi stacks. We have undertaken a study aiming at mapping these glycosyltransferases within Golgi stacks using immunogold-electron microscopy. To this end, we generated transgenic lines of tobacco (Nicotiana tabacum) BY-2 suspension-cultured cells expressing either the α-1,6-xylosyltransferase, AtXT1, the β-1,2-galactosyltransferase, AtMUR3, or the α-1,2-fucosyltransferase AtFUT1 of Arabidopsis thaliana fused to green-fluorescent protein (GFP). Localization of the fusion proteins within the endomembrane system was assessed using confocal microscopy. Additionally, tobacco cells were high pressure-frozen/freeze-substituted and subjected to quantitative immunogold labelling using anti-GFP antibodies to determine the localization patterns of the enzymes within subtypes of Golgi cisternae. The data demonstrate that: (i) all fusion proteins, AtXT1-GFP, AtMUR3-GFP and AtFUT1-GFP are specifically targeted to the Golgi apparatus; and (ii) AtXT1-GFP is mainly located in the cis and medial cisternae, AtMUR3-GFP is predominantly associated with medial cisternae and AtFUT1-GFP mostly detected over trans cisternae suggesting that initiation of xyloglucan side chains occurs in early Golgi compartments in tobacco cells.  相似文献   
989.
A meso-tetrakis(pentafluorophenyl)-chlorin with the reduced pyrrole ring linked to an isoxazolidine ring (FC) has been conjugated to four beta-cyclodextrins (CDFC). The CDFC exhibits excellent water solubility and is a potent photosensitizer towards proliferating NCTC 2544 human keratinocytes. The study by conventional steady state absorption and fluorescence spectroscopies and by time-resolved femto- and nanosecond laser flash spectroscopies suggests that in ethanol and pH 7 buffer the beta-cyclodextrins embed the highly hydrophobic tetrakis(pentafluorophenyl)-chlorin macrocycle and strongly interact with the chlorin rings in the singlet and triplet manifolds. In these solvents, femtosecond spectroscopy suggests that the conjugate undergoes a rapid relaxation in the upper excited singlet states induced by photochemical and/or conformation change(s) at a rate of about 5 ps(-1) to fluorescent states whose lifetime is approximately 8 ns. This interaction is destroyed upon addition of Triton X100 to buffer. Both FC and CDFC strongly fluoresce (Phi(F) approximately 0.5) in micelles. Similar behavior is observed at the triplet level. In ethanol and water, the initial transient triplet state absorbance decays within 1-3 mus yielding a longer lived triplet with spectral properties indistinguishable from that of original difference absorbance spectra. The determination of the molar absorbance in the 440-460 nm region ( approximately 35 000 M(-1) cm(-1)) leads to an estimate of approximately 0.2 for the triplet formation quantum yield of FC in toluene and of FC and CDFC in Triton X100 micelles. Quenching of the CDFC triplets by dioxygen in buffer produces (1)O(2) in a good yield consistent with the effective photocytotoxicity of the chlorin-cyclodextrins conjugate towards cultured NCTC 2544 human keratinocytes. By contrast, FC which aggregates in buffer produces little if any (1)O(2).  相似文献   
990.
Identification of armored heterotrophic dinoflagellates relies, in part, on plate tabulations obtained by SEM. Currently, two methods are used to visualize plate morphology and develop plate tabulations: swelling the sutures between the cellulose plates of intact organisms or stripping off the outer membranes with ethanol to expose the underlying cellulose plates. Both approaches are problematic with lightly armored dinoflagellates because sutures do not consistently swell to enable visualization, and the outer membranes are not consistently stripped. Further, generic and species differences necessitate frequent modification of these protocols to obtain reliable results. We describe an improved membrane stripping technique using the detergent Triton X‐100. Our method provides a more consistent standardized approach to removing the outer membranes of lightly armored dinoflagellates, including Pfiesteria shumwayae Glasgow & Burkholder, a taxon that has, until now, proven very difficult to strip with currently published methods. This method allows visualization of the sulcus, a region previously difficult to observe, and will greatly facilitate taxonomic studies of the lightly armored forms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号