全文获取类型
收费全文 | 1781篇 |
免费 | 143篇 |
专业分类
1924篇 |
出版年
2023年 | 7篇 |
2022年 | 16篇 |
2021年 | 25篇 |
2020年 | 21篇 |
2019年 | 15篇 |
2018年 | 26篇 |
2017年 | 24篇 |
2016年 | 34篇 |
2015年 | 79篇 |
2014年 | 74篇 |
2013年 | 132篇 |
2012年 | 135篇 |
2011年 | 157篇 |
2010年 | 98篇 |
2009年 | 105篇 |
2008年 | 121篇 |
2007年 | 107篇 |
2006年 | 102篇 |
2005年 | 92篇 |
2004年 | 91篇 |
2003年 | 96篇 |
2002年 | 104篇 |
2001年 | 15篇 |
2000年 | 5篇 |
1999年 | 23篇 |
1998年 | 27篇 |
1997年 | 23篇 |
1996年 | 12篇 |
1995年 | 10篇 |
1994年 | 18篇 |
1993年 | 19篇 |
1992年 | 13篇 |
1991年 | 9篇 |
1990年 | 11篇 |
1989年 | 6篇 |
1988年 | 10篇 |
1987年 | 11篇 |
1986年 | 6篇 |
1985年 | 10篇 |
1984年 | 9篇 |
1983年 | 4篇 |
1982年 | 7篇 |
1981年 | 3篇 |
1980年 | 4篇 |
1979年 | 2篇 |
1978年 | 1篇 |
1977年 | 2篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1972年 | 1篇 |
排序方式: 共有1924条查询结果,搜索用时 15 毫秒
91.
Dorthe Helena Larsen Catherine Poinsignon Thorkell Gudjonsson Christoffel Dinant Mark R. Payne Flurina J. Hari Jannie M. Rendtlew Danielsen Patrice Menard Jette Christensen Sand Manuel Stucki Claudia Lukas Jiri Bartek Jens S. Andersen Jiri Lukas 《The Journal of cell biology》2010,190(5):731-740
In response to ionizing radiation (IR), cells delay cell cycle progression and activate DNA repair. Both processes are vital for genome integrity, but the mechanisms involved in their coordination are not fully understood. In a mass spectrometry screen, we identified the adenosine triphosphate–dependent chromatin-remodeling protein CHD4 (chromodomain helicase DNA-binding protein 4) as a factor that becomes transiently immobilized on chromatin after IR. Knockdown of CHD4 triggers enhanced Cdc25A degradation and p21Cip1 accumulation, which lead to more pronounced cyclin-dependent kinase inhibition and extended cell cycle delay. At DNA double-strand breaks, depletion of CHD4 disrupts the chromatin response at the level of the RNF168 ubiquitin ligase, which in turn impairs local ubiquitylation and BRCA1 assembly. These cell cycle and chromatin defects are accompanied by elevated spontaneous and IR-induced DNA breakage, reduced efficiency of DNA repair, and decreased clonogenic survival. Thus, CHD4 emerges as a novel genome caretaker and a factor that facilitates both checkpoint signaling and repair events after DNA damage. 相似文献
92.
Julien Paccou Cédric Boudot Cédric Renard Sophie Liabeuf Said Kamel Patrice Fardellone Ziad Massy Michel Brazier Romuald Mentaverri 《Arthritis research & therapy》2014,16(5):1-9
Introduction
Human circulating monocytes express the calcium-sensing receptor (CaSR) and are involved in atherosclerosis. This study investigated the potential association between vascular calcification in rheumatoid arthritis (RA) and CaSR expression in circulating monocytes.Methods
In this cross-sectional study, 50 RA patients were compared to 25 control subjects matched for age and gender. Isolation of peripheral blood mononuclear cells and flow cytometry analysis were performed to study the surface and total CaSR expression in circulating monocytes. Coronary artery calcium (CAC) and abdominal aortic calcification (AAC) scores were evaluated by computed tomography and an association between these scores and the surface and/or total CaSR expression in circulating monocytes in RA patients was investigated.Results
The two groups were similar in terms of age (RA: 60.9 ± 8.3 years, versus controls: 59.6 ± 5.3 years) and gender (RA: 74.0% females versus 72.0% females). We did not find a higher prevalence and greater burden of CAC or AAC in RA patients versus age- and gender-matched controls. When compared with control subjects, RA patients did not exhibit greater total CaSR (101.6% ± 28.8 vs. 99.9% ± 22.0) or surface CaSR (104.6% ± 20.4 vs. 99.9% ± 13.7) expression, but total CaSR expression in circulating monocytes was significantly higher in RA patients with severe CAC (Agatston score ≥200, n = 11) than in patients with mild-to-moderate CAC (1 to 199, n = 21) (P = 0.01).Conclusions
This study demonstrates for the first time that total CaSR expression in human circulating monocytes is increased in RA patients with severe coronary artery calcification. 相似文献93.
Coxiella burnetii, the causative agent of the human disease Q fever, is a unique intracellular bacterial pathogen. Coxiella replicates to high numbers within a pathogen‐derived lysosome‐like vacuole, thriving within a low pH, highly proteolytic and oxidative environment. In 2009, researchers developed means to axenically culture Coxiella paving the way for the development of tools to genetically manipulate the organism. These advances have revolutionized our capacity to examine the pathogenesis of Coxiella. In recent years, targeted and random mutant strains have been used to demonstrate that the Dot/Icm type IV secretion system is essential for intracellular replication of Coxiella. Current research is focused towards understanding the unique cohort of over 130 effector proteins that are translocated into the host cell. Mutagenesis screens have been employed to identify effectors that play important roles for the biogenesis of the Coxiella‐containing vacuole and intracellular replication of Coxiella. A surprisingly high number of effector mutants demonstrate significant intracellular growth defects, and future studies on the molecular function of these effectors will provide great insight into the pathogenesis of Coxiella. Already, this expanse of new data implicates many eukaryotic processes that are targeted by the arsenal of Coxiella effectors including autophagy, apoptosis and vesicular trafficking. 相似文献
94.
Petitdemange C Becquart P Wauquier N Béziat V Debré P Leroy EM Vieillard V 《PLoS pathogens》2011,7(9):e1002268
Chikungunya virus (CHIKV) is a worldwide emerging pathogen. In humans it causes a syndrome characterized by high fever, polyarthritis, and in some cases lethal encephalitis. Growing evidence indicates that the innate immune response plays a role in controlling CHIKV infection. We show here that CHIKV induces major but transient modifications in NK-cell phenotype and function soon after the onset of acute infection. We report a transient clonal expansion of NK cells that coexpress CD94/NKG2C and inhibitory receptors for HLA-C1 alleles and are correlated with the viral load. Functional tests reveal cytolytic capacity driven by NK cells in the absence of exogenous signals and severely impaired IFN-γ production. Collectively these data provide insight into the role of this unique subset of NK cells in controlling CHIKV infection by subset-specific expansion in response to acute infection, followed by a contraction phase after viral clearance. 相似文献
95.
Cortès S Villiers CL Colpo P Couderc R Brakha C Rossi F Marche PN Villiers MB 《Biosensors & bioelectronics》2011,26(10):4162-4168
Microarrays are promising tools for cell isolation and detection. However, they have yet to be widely applied in biology. This stems from a lack of demonstration of their sensitivity and compatibility with complex biological samples, and a lack of proof that their use does not induce aberrant cellular effects. Herein, we characterized and optimized a recently developed technology associating antibody microarrays with surface plasmon resonance imaging (SPRi). Using a murine macrophage cell line we demonstrate the binding specificity of our antibody-microarrays and the correlation between SPRi signals and both the number of bound cells, and the level of expression of cell surface markers. Confocal microscopy reveals that cell binding to the chip through antibody-antigen interactions underwent morphological changes reflecting the density of the relevant cell surface marker without affecting cell viability as shown by fluorescent microscopy. The detection threshold of the microarray-SPRi system is lowered 10-fold by applying a polyethylene oxide film to the gold surface of the chip. This increased sensitivity allows the detection of cells representing as little as 0.5% of a mixed population. The potential of this method is illustrated by two applications: characterization of ligand-cell receptor interactions, allowing determination of receptor specificity, and analysis of peripheral blood mononuclear cells, demonstrating the suitability of this tool for the analysis of complex biological samples. 相似文献
96.
Little is known about endoplasmic reticulum (ER) export signals, particularly those of members of the G-protein-coupled receptor family. We investigated the structural motifs involved in membrane export of the human pituitary vasopressin V1b/V3 receptor. A series of V3 receptors carrying deletions and point mutations were expressed in AtT20 corticotroph cells. We analyzed the export of these receptors by monitoring radioligand binding and by analysis of a V3 receptor tagged with both green fluorescent protein and Myc epitopes by a novel flow cytometry-based method. This novel method allowed us to quantify total and membrane-bound receptor expression. Receptors lacking the C terminus were not expressed at the cell surface, suggesting the presence of an export motif in this domain. The distal C terminus contains two di-acidic (DXE) ER export motifs; however, mutating both these motifs had no effect on the V3 receptor export. The proximal C terminus contains a di-leucine (345)LL(346) motif surrounded by the hydrophobic residues Phe(341), Asn(342), and Leu(350). The mutation of one or more of these five residues abolished up to 100% of the receptor export. In addition, these mutants colocalized with calnexin, demonstrating that they were retained in the ER. Finally, this motif was sufficient to confer export properties on a CD8alpha glycoprotein-V3 receptor chimera. In conclusion, we have identified a novel export motif, FN(X)(2)LL(X)(3)L, in the C terminus of the V3 receptor. 相似文献
97.
Louise Deldicque Patrice D. Cani Nathalie M. Delzenne Keith Baar Marc Francaux 《Journal of physiology and biochemistry》2013,69(2):215-225
Certain conditions, such as several weeks of high-fat diet, disrupt endoplasmic reticulum (ER) homeostasis and activate an adaptive pathway referred as the unfolded protein response. When the unfolded protein response fails, the result is the development of inflammation and insulin resistance. These two pathological states are known to be improved by regular exercise training but the mechanisms remain largely undetermined. As it has recently been shown that the unfolded protein response is regulated by exercise, we hypothesised that concomitant treadmill exercise training (HFD+ex) prevents ER homeostasis disruption and its downstream consequences induced by a 6-week high-fat diet (HFD) in mice by activating the protective unfolded protein response. Several well-documented markers of the unfolded protein response were measured in the soleus and tibialis anterior muscles as well as in the liver and pancreas. In HFD mice, an increase in these markers was observed (from 2- to 15-fold, P?<?0.05) in all tissues studied. The combination of HFD+ex increased the expression of several markers further, up to 100 % compared to HFD alone (P?<?0.05). HFD increased inflammatory markers both in the plasma (IL-6 protein, 2.5?±?0.52-fold; MIP-1α protein, 1.3?±?0.13-fold; P?<?0.05) and in the tissues studied, and treadmill exercise attenuated the inflammatory state induced by HFD (P?<?0.05). However, treadmill exercise could not reverse HFD-induced whole body glucose intolerance, assessed by OGTT (AUC, 1.8?±?0.29-fold, P?<?0.05). In conclusion, our results show that a HFD activated the unfolded protein response in mouse tissues in vivo, and that endurance training promoted this response. We speculate that the potentiation of the unfolded protein response by endurance training may represent a positive adaptation protecting against further cellular stress. 相似文献
98.
Guillaume Lesage Jesse Shapiro Charles A Specht Anne-Marie Sdicu Patrice Ménard Shamiza Hussein Amy Hin Yan Tong Charles Boone Howard Bussey 《BMC genetics》2005,6(1):1-16
Background
The identification of disease-associated genes using single nucleotide polymorphisms (SNPs) has been increasingly reported. In particular, the Affymetrix Mapping 10 K SNP microarray platform uses one PCR primer to amplify the DNA samples and determine the genotype of more than 10,000 SNPs in the human genome. This provides the opportunity for large scale, rapid and cost-effective genotyping assays for linkage analysis. However, the analysis of such datasets is nontrivial because of the large number of markers, and visualizing the linkage scores in the context of genome maps remains less automated using the current linkage analysis software packages. For example, the haplotyping results are commonly represented in the text format.Results
Here we report the development of a novel software tool called CompareLinkage for automated formatting of the Affymetrix Mapping 10 K genotype data into the "Linkage" format and the subsequent analysis with multi-point linkage software programs such as Merlin and Allegro. The new software has the ability to visualize the results for all these programs in dChip in the context of genome annotations and cytoband information. In addition we implemented a variant of the Lander-Green algorithm in the dChipLinkage module of dChip software (V1.3) to perform parametric linkage analysis and haplotyping of SNP array data. These functions are integrated with the existing modules of dChip to visualize SNP genotype data together with LOD score curves. We have analyzed three families with recessive and dominant diseases using the new software programs and the comparison results are presented and discussed.Conclusions
The CompareLinkage and dChipLinkage software packages are freely available. They provide the visualization tools for high-density oligonucleotide SNP array data, as well as the automated functions for formatting SNP array data for the linkage analysis programs Merlin and Allegro and calling these programs for linkage analysis. The results can be visualized in dChip in the context of genes and cytobands. In addition, a variant of the Lander-Green algorithm is provided that allows parametric linkage analysis and haplotyping. 相似文献99.
Ceccaroli P Saltarelli R Cesari P Pierleoni R Sacconi C Vallorani L Rubini P Stocchi V Martin F 《Fungal genetics and biology : FG & B》2003,39(2):168-175
The metabolism of [1-13C]glucose in the vegetative mycelium of the ectomycorrhizal ascomycete Tuber borchii was studied in order to characterize the biochemical pathways for the assimilation of glucose and amino acid biosynthesis. The pathways were characterized using nuclear magnetic resonance spectroscopy in conjunction with [1-13C]glucose labeling. The enzymes of mannitol cycle and ammonium assimilation were also evaluated. The majority of the 13C label was incorporated into mannitol and this polyol was formed via a direct route from absorbed glucose. Amino acid biosynthesis was also an important sink of assimilated carbon and 13C was mainly incorporated into alanine and glutamate. From this intramolecular 13C enrichment, it is concluded that pyruvate, arising from [1-13C]glucose catabolism, was used by alanine aminotransferase, pyruvate dehydrogenase and pyruvate carboxylase before entering the Krebs cycle. The transfer of 13C-labeled mycelium on [12C]glucose showed that mannitol, alanine, and glutamate carbon were used to synthesize glutamine and arginine that likely play a storage role. 相似文献
100.
Kraus NJ Corneli PS Watkins M Bandyopadhyay PK Seger J Olivera BM 《Molecular phylogenetics and evolution》2011,58(2):383-389
A short (259 nucleotide) conserved intronic sequence (CIS) is surprisingly informative for delineating deep phylogenetic relationships in cone snails. Conus species previously have been assigned to clades based on the evidence from mitochondrial 12S and 16S rRNA gene sequences (1129 bp). Despite their length, these genes lack the phylogenetic information necessary to resolve the relationships among the clades. Here we show that the relationships can be inferred from just 46 sites in the very short CIS sequence (a portion of "intron 9" of the γ-glutamyl carboxylase gene). This is counterintuitive because in short sequences sampling error (noise) often drowns out phylogenetic signal. The intron 9 CIS is rich in synapomorphies that define the divergence patterns among eight clades of worm- and fish-hunting Conus, and it contains almost no homoplasy. Parsimony, maximum likelihood and Bayesian analyses of the combined sequences (mt rRNA+CIS) confirm most of the relationships among 23 Conus sequences. This phylogeny implies that fish-hunting behavior evolved at least twice during the history of Conus-once among New World species and independently in the Indo-Pacific clades. 相似文献