首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   22篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2016年   5篇
  2015年   14篇
  2014年   15篇
  2013年   15篇
  2012年   12篇
  2011年   10篇
  2010年   10篇
  2009年   6篇
  2008年   6篇
  2007年   17篇
  2006年   12篇
  2005年   8篇
  2004年   10篇
  2003年   13篇
  2002年   21篇
  2001年   4篇
  2000年   3篇
  1999年   8篇
  1998年   1篇
  1997年   2篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   7篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   6篇
  1980年   4篇
  1979年   1篇
  1976年   1篇
  1967年   1篇
  1966年   1篇
  1940年   1篇
  1908年   1篇
排序方式: 共有265条查询结果,搜索用时 15 毫秒
221.
Chemical LTD (CLTD) of synaptic transmission is triggered by simultaneously increasing presynaptic [cGMP] while inhibiting PKA. Here, we supply evidence that class II, but not III, metabotropic glutamate receptors (mGluRs), and A1 adenosine receptors, both negatively coupled to adenylate cyclase, play physiologic roles in providing PKA inhibition necessary to promote the induction of LTD at Schaffer collateral-CA1 synapses in hippocampal slices. Simultaneous activation of group II mGluRs with the selective agonist (2S,2'R,3'R)-2-(2',3'-dicarboxy-cyclopropyl) glycine (DCGIV; 5 microM), while raising [cGMP] with the type V phosphodiesterase inhibitor, zaprinast (20 microM), resulted in a long-lasting depression of synaptic strength. When zaprinast (20 microM) was combined with a cell-permeant PKA inhibitor H-89 (10 microM), the need for mGluR IIs was bypassed. DCGIV, when combined with a "submaximal" low frequency stimulation (1 Hz/400 s), produced a saturating LTD. The mGluR II selective antagonist, (2S)-alpha-ethylglutamic acid (EGLU; 5 microM), blocked induction of LTD by prolonged low frequency stimulation (1 Hz/900 s). In contrast, the mGluR III selective receptor blocker, (RS)-a-Cyclopropyl-[3- 3H]-4-phosphonophenylglycine (CPPG; 10 microM), did not impair LTD. The selective adenosine A1 receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 100 nM), also blocked induction of LTD, while the adenosine A1 receptor agonist N6-cyclohexyl adenosine (CHA; 50 nM) significantly enhanced the magnitude of LTD induced by submaximal LFS and, when paired with zaprinast (20 microM), was sufficient to elicit CLTD. Inhibition of PKA with H-89 rescued the expression of LTD in the presence of either EGLU or DPCPX, confirming the hypothesis that both group II mGluRs and A1 adenosine receptors enhance the induction of LTD by inhibiting adenylate cyclase and reducing PKA activity.  相似文献   
222.
223.
Adenylate cyclase from Dictyostelium discoideum was solubilized under alkaline conditions using the zwitterionic detergent CHAPS. In contrast to the membrane bound adenylate cyclase, the solubilized enzyme can use only Mn2+, but is inactive in the presence of Mg2+.  相似文献   
224.
The exposure of humans to electromagnetic near fields has not been sufficiently emphasized by researchers. We have used the plane-wave-spectrum approach to evaluate the electromagnetic field and determine the energy deposited in a lossy, homogeneous, semi-infinite slab placed in the near field of a source leaking radiation. Values of the fields and absorbed energy in the target are obtained by vector summation of the contributions of all the plane waves into which the prescribed field is decomposed. Use of a fast Fourier transform algorithm contributes to the high efficiency of the computations. The numerical results show that, for field distributions that are nearly constant over a physical extent of at least a free-space wavelength, the energy coupled into the target is approximately equal to that resulting from plane-wave exposure.  相似文献   
225.
Choleragen, when bound to various cultured cells, resisted extraction by Triton X-100 under conditions which retained the cytoskeletal framework of the cells. This resistance (> 75% of the bound toxin) was observed in Friend erythroleukemic, mouse neuroblastoma N18 and NB41A and rat glioma C6 cells even though the different cells varied over 1000-fold in the number of toxin receptors. The extent of extraction did not depend on whether the cells were in monolayer culture or in suspension or whether choleragen was bound at 0 or 37°C. A similar resistance to extraction was also observed in membranes isolated from toxin-treated cells. Using more drastic conditions and other non-ionic detergents, 90% of the bound choleragen was solubilized from cells and membranes. When rat glioma C6 cells, which bind only small amounts of choleragen, were incubated with the ganglioside GM1, toxin binding was increased and the bound toxin was also resistant to extraction. When these cells were incubated with [3H]GM1, up to 70% of the cell-associated GM1 was extracted under the mild conditions. When the GM1-labeled cells were incubated with choleragen or its B (binding) component, there was a significant reduction in the solubilization of GM1. Similar results were obtained with isolated membranes. When choleragen-receptor complexes were isolated from N18 cells labeled with [3H]galactose by immunoadsorption, only labeled GM1 was specifically recovered. These results suggest that it is the choleragen-ganglioside complex that is resistant to detergent extraction.  相似文献   
226.
    
Summary During investigations of murine and human mast cell immunoreactivity with potential anti-interleukin-4 antibodies, non-specific, non-immunological labelling of mouse and human mast cells became apparent. Non-specific, non-immunological labelling was identified by (i) immunolabelling of mast cells when using control isotype primary antibodies, (ii) ability of conjugated secondary antibodies to label mast cells without prior mast cell exposure to a primary antibody, (iii) extinction of the non-specific labelling and retention of specific labelling when the pH of the diluting and washing buffers is shifted from pH 7.2 to pH 6.0, and (iv) reduction/extinction of the labelling when the antibodies are pre-incubated with soluble heparin prior to immunostaining. The site of the reactivity on the electron microscope level was shown to be confined to the mast cell secretory granules. The results of this study support the hypothesis that non-specific labelling of mast cells results from an ionic interaction between the F(ab)2 segments of antibodies and the heparin constituent of the mast cell secretory granules. This study points out the necessity of stringent controls when using immunohistochemistry to determine mast cell reactivity to various antibodies.  相似文献   
227.
A determination of the zinc stoichiometry of the catalytic domain of the human matrix metalloproteinase stromelysin-1 has been carried out using enzyme purified from recombinant Escherichia coli that express C-terminally truncated protein. Atomic absorption spectrometry revealed that both the proenzyme (prostrom255) and the mature active form (strom255) contained nearly 2 mol of Zn/mol of protein. Full-length prostromelysin purified from a mammalian cell culture line also contained zinc in excess of 1 equiv. While zinc in prostrom255 could not be removed by dialysis against o-phenanthroline, similar treatment of mature strom255 resulted in the loss of one-half of the original zinc content. The peptidase activity of the zinc-depleted protein was reduced by greater than 85% but could be restored upon addition of Zn2+ or Co2+. Addition of a thiol-containing inhibitor to a CoZn hybrid enzyme resulted in marked spectral changes in both the visible and ultraviolet regions characteristic of sulfur ligation to Co2+. This direct evidence for an integral role in catalysis and inhibitor binding confirms the location of the exchangeable metal at the active site. To examine the environment of zinc in the proenzyme, a fully cobalt-substituted proenzyme was prepared by in vivo metal replacement. The absorbance features of dicobalt prostrom255 were consistent with metal coordination by the single cysteine present in the propeptide, although the data do not allow assignment to a particular zinc site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
228.
229.
We have identified a series of potent, orally bioavailable, non-peptidyl, triarylimidazole and triarylpyrrole glucagon receptor antagonists. 2-(4-Pyridyl)-5-(4-chlorophenyl)-3-(5-bromo-2-propyloxyphenyl)p yrr ole (L-168,049), a prototypical member of this series, inhibits binding of labeled glucagon to the human glucagon receptor with an IC50 = 3. 7 +/- 3.4 nM (n = 7) but does not inhibit binding of labeled glucagon-like peptide to the highly homologous human glucagon-like peptide receptor at concentrations up to 10 microM. The binding affinity of L-168,049 for the human glucagon receptor is decreased 24-fold by the inclusion of divalent cations (5 mM). L-168,049 increases the apparent EC50 for glucagon stimulation of adenylyl cyclase in Chinese hamster ovary cells expressing the human glucagon receptor and decreases the maximal glucagon stimulation observed, with a Kb (concentration of antagonist that shifts the agonist dose-response 2-fold) of 25 nM. These data suggest that L-168,049 is a noncompetitive antagonist of glucagon action. Inclusion of L-168, 049 increases the rate of dissociation of labeled glucagon from the receptor 4-fold, confirming that the compound is a noncompetitive glucagon antagonist. In addition, we have identified two putative transmembrane domain residues, phenylalanine 184 in transmembrane domain 2 and tyrosine 239 in transmembrane domain 3, for which substitution by alanine reduces the affinity of L-168,049 46- and 4. 5-fold, respectively. These mutations do not alter the binding of labeled glucagon, suggesting that the binding sites for glucagon and L-168,049 are distinct.  相似文献   
230.
Iron chelation therapy was initially designed to alleviate the toxic effects of excess iron evident in iron-overload diseases. However, some iron chelator-metal complexes have also gained interest due to their high redox activity and toxicological properties that have potential for cancer chemotherapy. This communication addresses the conflicting results published recently on the ability of the iron chelator, Dp44mT, to induce hydroxyl radical formation upon complexation with iron (B.B. Hasinoff and D. Patel, J Inorg. Biochem.103 (2009), 1093-1101). This previous study used EPR spin-trapping to show that Dp44mT-iron complexes were not able to generate hydroxyl radicals. Here, we demonstrate the opposite by using the same technique under very similar conditions to show the Dp44mT-iron complex is indeed redox-active and induces hydroxyl radical formation. This was studied directly in an iron(II)/H2O2 reaction system or using a reducing iron(III)/ascorbate system implementing several different buffers at pH 7.4. The demonstration by EPR that the Dp44mT-iron complex is redox-active confirms our previous studies using cyclic voltammetry, ascorbate oxidation, benzoate hydroxylation and a plasmid DNA strand-break assay. We discuss the relevance of the redox activity to the biological effects of Dp44mT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号