首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   426篇
  免费   29篇
  国内免费   2篇
  2023年   4篇
  2022年   12篇
  2021年   17篇
  2020年   15篇
  2019年   18篇
  2018年   9篇
  2017年   20篇
  2016年   31篇
  2015年   20篇
  2014年   27篇
  2013年   30篇
  2012年   39篇
  2011年   35篇
  2010年   20篇
  2009年   17篇
  2008年   19篇
  2007年   14篇
  2006年   19篇
  2005年   14篇
  2004年   8篇
  2003年   12篇
  2002年   8篇
  2001年   11篇
  2000年   8篇
  1999年   4篇
  1998年   2篇
  1996年   3篇
  1992年   4篇
  1991年   1篇
  1989年   2篇
  1986年   1篇
  1985年   1篇
  1981年   3篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
排序方式: 共有457条查询结果,搜索用时 15 毫秒
21.
Tolerant and non-tolerant clones of Chloris barbata Sw. obtained, respectively, from an erstwhile mercury contaminated solid waste dump site near a chloralkali plant and a non-contaminated (control) site were subjected to cadmium-stress by growing the rooted cuttings in water containing CdSO4, 13 and 130 μM. Differences between the two clones in their response to cadmium-stress were noted in root growth, and also with respect to certain biochemical parameters. Whereas catalase activity decreased and non protein-thiol levels increased in the non-tolerant clone, the level of protein-thiol alone increased significantly in the tolerant clone in response to cadmium-stress. No remarkable differences between the clones, however, were noted with respect to total soluble protein, peroxidase activity and lipid peroxidation. Remarkably the two clones responded differently to buthionine sulfoximine, an inhibitor of glutathione and/or phytochelatin synthesis, which inhibited root growth significantly in non-tolerant clone but not in the tolerant clone. Buthionine sulfoximine, nonetheless, could potentate cadmium toxicity in either of the clones, but more effectively in the tolerant clone. The high sensitivity of tolerant-clone to the combined treatment of BSO and Cd in the present study could, therefore, be attributed to the cumulative oxidative stress generated synergistically by BSO and Cd.  相似文献   
22.
Butyrate enemas have been demonstrated to ameliorate inflammation in ulcerative colitis. The mechanism of this protective effect of butyrate is not known, and this study examines the effect of butyrate on epithelial function, inducible heat shock protein 70 (HSP70) expression, and NF-kappaB activation in experimental colitis. Colitis was induced in rats by oral dextran sulfate sodium (DSS) and by butyrate or saline enemas. Mucosal barrier function was assessed by electrical resistance and [14C]mannitol permeability. HSP70 production was determined by [35S]methionine labeling, Western blot analysis, and immunohistochemistry. Activation of heat shock factors (HSFs) and NF-kappaB was evaluated by EMSA. Butyrate showed a significant protection against the decrease in cell viability, increase in mucosal permeability, and polymorphonuclear neutrophil infiltration seen in DSS colitis. Butyrate inhibited HSP70 expression in DSS colitis and also inhibited the activation of HSF and NF-kappaB. Thus butyrate enema was found to be cytoprotective in DSS colitis, an effect partly mediated by suppressing activation of HSP70 and NF-kappaB.  相似文献   
23.
Nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs) are innate immune receptors that recognize bacterial cell wall components and initiate host immune response. Structure and function of NLRs have been well studied in human and mice, but little information exists on genetic composition and role of these receptors in innate immune system of water buffalo—a species known for its exceptional disease resistance. Here, a comparative study on the functional domains of NOD1 and NOD2 was performed across different species. The NOD mediated in-vitro cellular responses were studied in buffalo peripheral blood mononuclear cells, resident macrophages, mammary epithelial, and fibroblast cells. Buffalo NOD1 (buNOD1) and buNOD2 showed conserved domain architectures as found in other mammals. The domains of buNOD1 and buNOD2 showed analogy in secondary and tertiary conformations. Constitutive expressions of NODs were ubiquitous in different tissues. Following treatment with NOD agonists, peripheral lymphocytes showed an IFN-γ response along-with production of pro-inflammatory cytokines. Alveolar macrophages and mammary epithelial cells showed NOD mediated in-vitro immune response through NF-κB dependent pathway. Fibroblasts showed pro-inflammatory cytokine response following agonist treatment. Our study demonstrates that both immune and non-immune cells could generate NOD-mediated responses to pathogens though the type and magnitude of response depend on the cell types. The structural basis of ligand recognition by buffalo NODs and knowledge of immune response by different cell types could be useful for development of non-infective innate immune modulators and next generation anti-inflammatory compounds.  相似文献   
24.
25.
26.
27.
Introgression and functional expression of either the PcINO1 (l-myo-inositol 1-phosphate synthase or MIPS coding gene from the wild halophytic rice, Porteresia coarctata) or McIMTI (inositol methyl transferase, IMTI coding gene from common ice plant Mesembryanthemum crystallinum) has earlier been shown to confer salt tolerance to transgenic tobacco plants (Sheveleva et al., Plant Physiol 115:1211–1219, 1997; Majee et al., J Biol Chem 279:28539–28552, 2004). In this communication, we show that transgenic tobacco plants co-expressing PcINO1 and McIMT1 gene either in cytosol or in chloroplasts accumulate higher amount of total inositol (free and methyl inositol) compared to non-transgenic plants. These transgenic plants were more competent in terms of growth potential and photosynthetic activity and were less prone to oxidative stress under salt stress. A positive correlation between the elevated level of total inositol and methylated inositol and the capability of the double transgenic plants to withstand a higher degree of salt stress compared to the plants expressing either PcINO1 or McIMT1 alone is inferred.  相似文献   
28.
Arginine is a crucial amino acid that serves to modulate the cellular immune response during infection. Arginine is also a common substrate for both inducible nitric oxide synthase (iNOS) and arginase. The generation of nitric oxide from arginine is responsible for efficient immune response and cytotoxicity of host cells to kill the invading pathogens. On the other hand, the conversion of arginine to ornithine and urea via the arginase pathway can support the growth of bacterial and parasitic pathogens. The competition between iNOS and arginase for arginine can thus contribute to the outcome of several parasitic and bacterial infections. There are two isoforms of vertebrate arginase, both of which catalyze the conversion of arginine to ornithine and urea, but they differ with regard to tissue distribution and subcellular localization. In the case of infection with Mycobacterium, Leishmania, Trypanosoma, Helicobacter, Schistosoma, and Salmonella spp., arginase isoforms have been shown to modulate the pathology of infection by various means. Despite the existence of a considerable body of evidence about mammalian arginine metabolism and its role in immunology, the critical choice to divert the host arginine pool by pathogenic organisms as a survival strategy is still a mystery in infection biology.  相似文献   
29.
The genome sequence of the cyanobacterium Synechocystis sp. PCC6803 revealed four Open reading frame (ORF) encoding putative inositol monophosphatase or inositol monophosphatase-like proteins. One of the ORFs, sll1383, is ∼870 base pair long and has been assigned as a probable myo-inositol 1 (or 4) monophosphatase (IMPase; EC 3.1.3.25). IMPase is the second enzyme in the inositol biosynthesis pathway and catalyses the conversion of L-myo-inositol 1-phosphate to free myo-inositol. The present work describes the functional assignment of ORF sll1383 as myo-inositol 1-phosphate phosphatase (IMPase) through molecular cloning, bacterial overexpression, purification and biochemical characterization of the gene product. Affinity (K m) of the recombinant protein for the substrate DL-myo-inositol 1-phosphate was found to be much higher (0.0034 ± 0.0003 mM) compared to IMPase(s) from other sources but in comparison V max (∼0.033 μmol Pi/min/mg protein) was low. Li+ was found to be an inhibitor (IC50 6.0 mM) of this enzyme, other monovalent metal ions (e.g. Na+, K+ NH4+) having no significant effect on the enzyme activity. Like other IMPase(s), the activity of this enzyme was found to be totally Mg2+ dependent, which can be substituted partially by Mn2+. However, unlike other IMPase(s), the enzyme is optimally active at ∼42°C. To the best of our knowledge, sll1383 encoded IMPase has the highest substrate affinity and specificity amongst the known examples from other prokaryotic sources. A possible application of this recombinant protein in the enzymatic coupled assay of L-myo-inositol 1-phosphate synthase (MIPS) is discussed.  相似文献   
30.
BioMetals - A family of dioxidovanadium(V) complexes (1–4) of the type [Na(H2O)x]+[VVO2(HL1?4)]? (x?=?4, 4.5 and 7) where HL2? represents the dianionic form of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号