首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1106篇
  免费   72篇
  1178篇
  2023年   8篇
  2022年   27篇
  2021年   58篇
  2020年   27篇
  2019年   18篇
  2018年   40篇
  2017年   30篇
  2016年   31篇
  2015年   41篇
  2014年   57篇
  2013年   75篇
  2012年   98篇
  2011年   76篇
  2010年   47篇
  2009年   30篇
  2008年   48篇
  2007年   42篇
  2006年   34篇
  2005年   35篇
  2004年   17篇
  2003年   14篇
  2002年   16篇
  2001年   18篇
  2000年   19篇
  1999年   14篇
  1995年   5篇
  1993年   8篇
  1992年   11篇
  1991年   15篇
  1990年   14篇
  1989年   12篇
  1988年   12篇
  1987年   8篇
  1986年   9篇
  1985年   14篇
  1984年   12篇
  1983年   7篇
  1982年   5篇
  1980年   7篇
  1979年   13篇
  1978年   7篇
  1977年   8篇
  1976年   7篇
  1975年   8篇
  1974年   6篇
  1973年   11篇
  1972年   11篇
  1971年   8篇
  1970年   6篇
  1966年   6篇
排序方式: 共有1178条查询结果,搜索用时 15 毫秒
51.
Inflammatory bowel disease (IBD) is a relapsing inflammation of intestine, which is mediated by release of inflammatory mediators. Both cyclo-oxygenase product prostaglandin (PGE2) and lipo-oxygenase product leukotriene (LTB4), may contribute to the pathogenesis of the inflammatory response. Nimesulide, a preferential COX-2 inhibitor was evaluated for its efficacy against experimental colitis in two different models (acetic acid- and LTB4-induced IBD) in rats. Inflammatory response was induced by intrarectal single administration of acetic acid or LTB4. Nimesulide (9 and 18 mg/kg, p.o.) significantly prevented development of inflammatory changes, decreased myeloperoxidase (MPO) activity, and also restored the altered contractility response of the isolated colon segment to KCl. The results suggested the involvement of both cyclo-oxygenase (COX) and lipo-oxygenase-mediated proinflammatory agents in colonic inflammatory process associated with IBD. Further, this study suggests that such therapeutic interventions may be of value in the treatment of IBD.  相似文献   
52.
The periplasmic hydrogenase containing equivalent amounts of nickel and selenium plus non-heme iron [NiFeSe) hydrogenase) has been purified from cells of the sulfate reducing bacterium Desulfovibrio baculatus (DSM 1748) grown on a lactate/sulfate medium containing natural Se isotopes and the nuclear isotope, 77Se. Both the 77Se-enriched and unenriched hydrogenases were shown to be free of other hydrogenases and characterized with regard to their Se contents. EPR studies of the reduced nickel signal generated by redox titrations of the enriched and unenriched (NiFeSe) hydrogenases demonstrated that the gx = 2.23 and gy = 2.17 resonances are appreciably broadened by the spin of the 77Se nucleus (I = 1/2). This observation demonstrates unambiguously that the unpaired electron is shared by the Ni and Se atoms and that Se serves as a ligand to the nickel redox center of the (NiFeSe) hydrogenase.  相似文献   
53.
Histone deacetylase inhibitors (HDACi) are endowed with plethora of biological functions including anti-proliferative, anti-inflammatory, anti-parasitic, and cognition-enhancing activities. Parsing the structure–activity relationship (SAR) for each disease condition is vital for long-term therapeutic applications of HDACi. We report in the present study specific cap group substitution patterns and spacer-group chain lengths that enhance the antimalarial and antileishmanial activity of aryltriazolylhydroxamates-based HDACi. We identified many compounds that are several folds selectively cytotoxic to the plasmodium parasites compared to standard HDACi. Also, a few of these compounds have antileishmanial activity that rivals that of miltefosine, the only currently available oral agent against visceral leishmaniasis. The anti-parasite properties of several of these compounds tracked well with their anti-HDAC activities. The results presented here provide further evidence on the suitability of HDAC inhibition as a viable therapeutic option to curb infections caused by apicomplexan protozoans and trypanosomatids.  相似文献   
54.
Mesenchymal stem cells (MSC) can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM) proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A) levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy.  相似文献   
55.
Patil SS  Tam LQ 《Plant physiology》1972,49(5):803-807
The specificity of the Pseudomonas phaseolicola toxin for enzyme inhibition and its relationship to toxin-induced chlorosis in bean leaves (Phaseolus vulgaris L.) was examined. The toxin showed no significant inhibitory activity against glutamine synthetase, glutamine transferase, carbamyl phosphate synthetase, aspartate carbamoyltransferase, or arginase at concentrations 100-fold higher than that needed to inhibit ornithine carbamoyltransferase by 50%.  相似文献   
56.
57.
Aim: This study investigated the quorum sensing, biofilm and type three secretion system (TTSS) inhibitory properties of citrus flavonoids. Methods and Results: Flavonoids were tested for their ability to inhibit quorum sensing using Vibrio harveyi reporter assay. Biofilm assays were carried out in 96‐well plates. Inhibition of biofilm formation in Escherichia coli O157:H7 and V. harveyi by citrus flavonoids was measured. Furthermore, effect of naringenin on expression of V. harveyi TTSS was investigated by semi‐quantitative PCR. Differential responses for different flavonoids were observed for different cell–cell signalling systems. Among the tested flavonoids, naringenin, kaempferol, quercetin and apigenin were effective antagonists of cell–cell signalling. Furthermore, these flavonoids suppressed the biofilm formation in V. harveyi and E. coli O157:H7. In addition, naringenin altered the expression of genes encoding TTSS in V. harveyi. Conclusion: The results of the study indicate a potential modulation of bacterial cell–cell communication, E. coli O157:H7 biofilm and V. harveyi virulence, by flavonoids especially naringenin, quercetin, sinensetin and apigenin. Among the tested flavonoids, naringenin emerged as potent and possibly a nonspecific inhibitor of autoinducer‐mediated cell–cell signalling. Naringenin and other flavonoids are prominent secondary metabolites present in citrus species. Therefore, citrus, being a major source of some of these flavonoids and by virtue of widely consumed fruit, may modulate the intestinal microflora. Significance and Impact of the Study: Currently, a limited number of naturally occurring compounds have demonstrated their potential in inhibition of cell–cell communications; therefore, citrus flavonoids may be useful as lead compounds for the development of antipathogenic agents.  相似文献   
58.
Succinate dehydrogenase was purified from the particulate fraction of Desulfobulbus. The enzyme catalyzed both fumarate reduction and succinate oxidation but the rate of fumarate reduction was 8-times less than that of succinate oxidation. Quantitative analysis showed the presence of 1 mol of covalently bound flavin and 1 mol of cytochrome b per mol of succinate dehydrogenase. The enzyme contained three subunits with molecular mass 68.5, 27.5 and 22 kDa. EPR spectroscopy indicated the presence of at least two iron sulfur clusters. 2-Heptyl-4-hydroxy-quinoline-N-oxide inhibited the electron-transfer between succinate dehydrogenase and a high redox potential cytochrome c3 from Desulfobulbus elongatus.  相似文献   
59.

Background

AMP-activated protein kinase (AMPK) is a fuel-sensing enzyme that is activated when cells experience energy deficiency and conversely suppressed in surfeit of energy supply. AMPK activation improves insulin sensitivity via multiple mechanisms, among which AMPK suppresses mTOR/S6K-mediated negative feedback regulation of insulin signaling.

Results

In the present study we further investigated the mechanism of AMPK-regulated insulin signaling. Our results showed that 5-aminoimidazole-4-carboxamide-1 ribonucleoside (AICAR) greatly enhanced the ability of insulin to stimulate the insulin receptor substrate-1 (IRS1)-associated PI3K activity in differentiated 3T3-F442a adipocytes, leading to increased Akt phosphorylation at S473, whereas insulin-stimulated activation of mTOR was diminished. In 3T3-F442a preadipocytes, these effects were attenuated by expression of a dominant negative mutant of AMPK α1 subunit. The enhancing effect of ACIAR on Akt phosphorylation was also observed when the cells were treated with EGF, suggesting that it is regulated at a step beyond IR/IRS1. Indeed, when the cells were chronically treated with AICAR in the absence of insulin, Akt phosphorylation was progressively increased. This event was associated with an increase in levels of phosphatidylinositol -3,4,5-trisphosphate (PIP3) and blocked by Wortmannin. We then expressed the dominant negative mutant of PTEN (C124S) and found that the inhibition of endogenous PTEN per se did not affect phosphorylation of Akt at basal levels or upon treatment with AICAR or insulin. Thus, this result suggests that AMPK activation of Akt is not mediated by regulating phosphatase and tensin homologue (PTEN).

Conclusion

Our present study demonstrates that AMPK exerts dual effects on the PI3K pathway, stimulating PI3K/Akt and inhibiting mTOR/S6K.  相似文献   
60.
Synthetic soluble (—)-dopa melanin was prepared in deuteriated buffer, pH 8, by autooxidation of the precursor. At 6 mM of the precursor, the incorporation was over 90%. The changes in the line width measurements of N-CH3 protons of enantiomers of ephedrine in the soluble melanin were quantified by NMR spectroscopy. The dissociation constants of (—)-1R,2S-ephedrine, (+)-1S,2R-ephedrine, (—)-1R,2R-ψ-ephedrine, and (+)-1S,2S-ψ-ephedrine were 11.7, 4.20, 3.60, and 4.80 mM, respectively. Since the concentration of (—)-dopa was known and since the conversion of (—)-dopa to indole units of melanin was considered as 1:1, the stoichiometry of the interaction between the drug and the indole unit was calculated. Based on the dissociation constants of the enantiomers, it appears that up to four molecules of (—)-ephedrine can interact with one indole unit of the melanin, while such a ratio for other isomers appear to be 2:1. The preference by indole units of melanin is stereoselective. © 1992 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号