首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   805篇
  免费   128篇
  国内免费   1篇
  2021年   17篇
  2020年   9篇
  2019年   6篇
  2018年   8篇
  2017年   9篇
  2016年   12篇
  2015年   30篇
  2014年   38篇
  2013年   39篇
  2012年   33篇
  2011年   28篇
  2010年   23篇
  2009年   15篇
  2008年   35篇
  2007年   36篇
  2006年   36篇
  2005年   34篇
  2004年   35篇
  2003年   29篇
  2002年   29篇
  2001年   24篇
  2000年   33篇
  1999年   22篇
  1998年   14篇
  1997年   6篇
  1996年   13篇
  1995年   11篇
  1994年   12篇
  1993年   13篇
  1992年   19篇
  1991年   20篇
  1990年   18篇
  1989年   15篇
  1988年   12篇
  1987年   8篇
  1986年   13篇
  1985年   6篇
  1984年   9篇
  1983年   9篇
  1981年   12篇
  1979年   12篇
  1978年   10篇
  1976年   12篇
  1975年   6篇
  1973年   5篇
  1972年   11篇
  1971年   6篇
  1970年   7篇
  1969年   5篇
  1882年   6篇
排序方式: 共有934条查询结果,搜索用时 156 毫秒
41.
In previous experiments, three pepsin-resistant fragments of type IV collagen were isolated from chicken gizzards and designated 7S, F3, and (F1)2F2 (Mayne, R., and Zettergren, J. G. (1980) Biochemistry 19, 4065-4072). In the present experiments, a series of monoclonal antibodies to type IV collagen were prepared, each one of which recognized an epitope present in only one of the three fragments. A high molecular weight fraction of type IV collagen (designated 7S + arms (215 nm)) was isolated after agarose gel filtration and characterized by electron microscopy after rotary shadowing and by gel electrophoresis. Analysis of 7S + arms (215 nm) by inhibition enzyme-linked immunosorbent assay demonstrated the presence of the epitopes for 7S and F3 but not for (F1)2F2. This result, therefore, provides additional evidence that the order of the pepsin-resistant fragments of chicken type IV collagen is 7S-F3-(F1)2F2.  相似文献   
42.
43.
We have established the genomic cleavage map of Salmonella enteritidis strain SSU7998 using pulsed-field gel electrophoresis. The chromosome of 4600kb was analysed by XbaI (16 fragments), I-CeuI (7 fragments) and BlnI (12 fragments); the genome also contains a plasmid of 60 kb. Cleavage sites of I-CeuI, in the large subunit ribosomal RNA gene, are conserved from Salmonella typhimurium and Escherichia coli K-12, and the XbaI and BinI sites in glt-tRNA are also conserved, but other sites are less conserved. Transposon Tn10, located at 60 different positions in the chromosome of S. typhimurium, was transduced by bacteriophage P22 into S. enteritidis and the insertion mapped using the XbaI and BlnI sites on Tn10. Gene order in S. enteritidis is identical to S. typhimurium LT2 and similar to E. coli K-12 except for an inversion of 815 kb, which covers the terminus region including T1 and T2. Endpoints are in the NDZs, or non-divisible zones, in which inversion endpoints were not detected in experiments in E. coli K-12 and S. typhimurium LT2. This inversion resembles the inversion between S. typhimurium and E. coli, but is longer at both ends.  相似文献   
44.
45.
We document high rates of triploidy in aspen (Populus tremuloides) across the western USA (up to 69% of genets), and ask whether the incidence of triploidy across the species range corresponds with latitude, glacial history (as has been documented in other species), climate, or regional variance in clone size. Using a combination of microsatellite genotyping, flow cytometry, and cytology, we demonstrate that triploidy is highest in unglaciated, drought-prone regions of North America, where the largest clone sizes have been reported for this species. While we cannot completely rule out a low incidence of undetected aneuploidy, tetraploidy or duplicated loci, our evidence suggests that these phenomena are unlikely to be significant contributors to our observed patterns. We suggest that the distribution of triploid aspen is due to a positive synergy between triploidy and ecological factors driving clonality. Although triploids are expected to have low fertility, they are hypothesized to be an evolutionary link to sexual tetraploidy. Thus, interactions between clonality and polyploidy may be a broadly important component of geographic speciation patterns in perennial plants. Further, cytotypes are expected to show physiological and structural differences which may influence susceptibility to ecological factors such as drought, and we suggest that cytotype may be a significant and previously overlooked factor in recent patterns of high aspen mortality in the southwestern portion of the species range. Finally, triploidy should be carefully considered as a source of variance in genomic and ecological studies of aspen, particularly in western U.S. landscapes.  相似文献   
46.
Infectious disease emergence has increased significantly over the last 30 years, with mass mortality events (MMEs) associated with epizootics becoming increasingly common. Factors influencing these events have been widely studied in terrestrial systems, but remain relatively unexplored in marine mammals. Infectious disease‐induced MMEs (ID MMEs) have not been reported ubiquitously among marine mammal species, indicating that intrinsic (host) and/or extrinsic (environmental) ecological factors may influence this heterogeneity. We assess the occurrence of ID MMEs (1955–2018) across extant marine mammals (n = 129) in relation to key life‐history characteristics (sociality, trophic level, habitat breadth) and environmental variables (season, sea surface temperature [SST] anomalies, El Niño occurrence). Our results show that ID MMEs have been reported in 14% of marine mammal species (95% CI 9%–21%), with 72% (n = 36; 95% CI 56%–84%) of these events caused predominantly by viruses, primarily morbillivirus and influenza A. Bacterial pathogens caused 25% (95% CI 14%–41%) of MMEs, with only one being the result of a protozoan pathogen. Overall, virus‐induced MMEs involved a greater number of fatalities per event compared to other pathogens. No association was detected between the occurrence of ID MMEs and host characteristics, such as sociality or trophic level, but ID MMEs did occur more frequently in semiaquatic species (pinnipeds) compared to obligate ocean dwellers (cetaceans; χ2 = 9.6, p = .002). In contrast, extrinsic factors significantly influenced ID MMEs, with seasonality linked to frequency (χ2 = 19.85, p = .0002) and severity of these events, and global yearly SST anomalies positively correlated with their temporal occurrence (Z = 3.43, p = 2.7e‐04). No significant association was identified between El Niño and ID MME occurrence (Z = 0.28, p = .81). With climate change forecasted to increase SSTs and the frequency of extreme seasonal weather events, epizootics causing MMEs are likely to intensify with significant consequences for marine mammal survival.  相似文献   
47.
Malaria parasites are fast replicating unicellular organisms and require substantial amounts of folate for DNA synthesis. Despite the central role of this critical co‐factor for parasite survival, only little is known about intraparasitic folate trafficking in Plasmodium. Here, we report on the expression, subcellular localisation and function of the parasite's folate transporter 2 (FT2) during life cycle progression in the murine malaria parasite Plasmodium berghei. Using live fluorescence microscopy of genetically engineered parasites, we demonstrate that FT2 localises to the apicoplast. In invasive P. berghei stages, a fraction of FT2 is also observed at the apical end. Upon genetic disruption of FT2, blood and liver infection, gametocyte production and mosquito colonisation remain unaltered. But in the Anopheles vector, FT2‐deficient parasites develop inflated oocysts with unusual pulp formation consisting of numerous single‐membrane vesicles, which ultimately fuse to form large cavities. Ultrastructural analysis suggests that this defect reflects aberrant sporoblast formation caused by abnormal vesicular traffic. Complete sporogony in FT2‐deficient oocysts is very rare, and mutant sporozoites fail to establish hepatocyte infection, resulting in a complete block of parasite transmission. Our findings reveal a previously unrecognised organellar folate transporter that exerts critical roles for pathogen maturation in the arthropod vector.  相似文献   
48.
49.
50.

Background and Aims

Plants display a wide range of traits that allow them to use animals for vital tasks. To attract and reward aggressive ants that protect developing leaves and flowers from consumers, many plants bear extrafloral nectaries (EFNs). EFNs are exceptionally diverse in morphology and locations on a plant. In this study the evolution of EFN diversity is explored by focusing on the legume genus Senna, in which EFNs underwent remarkable morphological diversification and occur in over 80 % of the approx. 350 species.

Methods

EFN diversity in location, morphology and plant ontogeny was characterized in wild and cultivated plants, using scanning electron microscopy and microtome sectioning. From these data EFN evolution was reconstructed in a phylogenetic framework comprising 83 Senna species.

Key Results

Two distinct kinds of EFNs exist in two unrelated clades within Senna. ‘Individualized’ EFNs (iEFNs), located on the compound leaves and sometimes at the base of pedicels, display a conspicuous, gland-like nectary structure, are highly diverse in shape and characterize the species-rich EFN clade. Previously overlooked ‘non-individualized’ EFNs (non-iEFNs) embedded within stipules, bracts, and sepals are cryptic and may represent a new synapomorphy for clade II. Leaves bear EFNs consistently throughout plant ontogeny. In one species, however, early seedlings develop iEFNs between the first pair of leaflets, but later leaves produce them at the leaf base. This ontogenetic shift reflects our inferred diversification history of iEFN location: ancestral leaves bore EFNs between the first pair of leaflets, while leaves derived from them bore EFNs either between multiple pairs of leaflets or at the leaf base.

Conclusions

EFNs are more diverse than previously thought. EFN-bearing plant parts provide different opportunities for EFN presentation (i.e. location) and individualization (i.e. morphology), with implications for EFN morphological evolution, EFN–ant protective mutualisms and the evolutionary role of EFNs in plant diversification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号