首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6512篇
  免费   625篇
  国内免费   570篇
  7707篇
  2023年   62篇
  2022年   133篇
  2021年   199篇
  2020年   122篇
  2019年   146篇
  2018年   137篇
  2017年   124篇
  2016年   176篇
  2015年   289篇
  2014年   305篇
  2013年   356篇
  2012年   523篇
  2011年   417篇
  2010年   291篇
  2009年   273篇
  2008年   396篇
  2007年   393篇
  2006年   330篇
  2005年   296篇
  2004年   284篇
  2003年   237篇
  2002年   218篇
  2001年   226篇
  2000年   200篇
  1999年   147篇
  1998年   64篇
  1997年   47篇
  1996年   32篇
  1995年   40篇
  1994年   40篇
  1993年   35篇
  1992年   96篇
  1991年   78篇
  1990年   82篇
  1989年   85篇
  1988年   62篇
  1987年   64篇
  1986年   69篇
  1985年   69篇
  1984年   54篇
  1983年   49篇
  1982年   40篇
  1981年   28篇
  1980年   31篇
  1979年   42篇
  1978年   31篇
  1976年   27篇
  1975年   27篇
  1974年   34篇
  1973年   36篇
排序方式: 共有7707条查询结果,搜索用时 0 毫秒
91.
A series of 4-(2-pyridyl)piperazine-1-carboxamide analogues based on the lead compound 1 was synthesized and evaluated for VR1 antagonist activity in capsaicin-induced (CAP) and pH (5.5)-induced (pH) FLIPR assays in a rat VR1-expressing HEK293 cell line. Potent VR1 antagonists were identified through SAR studies. From these studies, 18 was found to be very potent in the in vitro assay [IC(50)=4.8 nM (pH) and 35 nM (CAP)] and orally available in rat (F%=15.1).  相似文献   
92.
利用分解袋法对日本亚高山针叶林的针叶(Abies veitchii Lindl,and A.mariesi Mast.)和阔叶(Betula ermanii Cham.and B.corylifolia Regal.et Maxim.)凋落物进行了分解实验研究。结果表明尽管分解初期的两种凋落物的养分以及分解后期凋落物剩余重量差异很大,但两种凋落物养分浓度在分解后期(30个月以后)趋于一致。这种趋同现象在不同养分中有不同的趋同机制。氮元素浓度升高到分解后期浓度差变小,这种现象是由于分解菌的固持作用及受木质素的束缚所致;钾和镁在分解初期浓度急剧下降,进而浓度差变小,是由于淋溶作用所致。在分解过程中这些元素非常容易被淋溶掉,直到和土壤中的浓度达到一致为止。钙是结构元素,它的行踪和有机物组分有密切关系。由于分解后期有机组分木质化和腐殖质化进而浓度趋同,所以钙的浓度也相应趋同。  相似文献   
93.
The NMR parameters for the 1,N2-propanodeoxyguanosine (X) opposite deoxyadenosine positioned in the center of the complementary d(C1-A2-T3-G4-X5-G6-T7-A8-C9).d(G10-T11-A12-C13-A14-C15-A 16-T17-G18) X.A 9-mer duplex are pH dependent. A previous paper established protonated X5(syn).A14(anti) pairing in the X.A 9-mer duplex at pH 5.8 [Kouchakdjian, M., Marinelli, E., Gao, X., Johnson, F., Grollman, A., & Patel, D. J. (1989) Biochemistry 28, 5647-5657]; this paper focuses on the pairing alignment at the lesion site at pH 8.9. The observed NOEs between specific exocyclic CH2 protons and both the imino proton of G6 and the sugar H1' protons of C13 and A14 establish that X5 is positioned toward the G6.C13 base pair with the exocyclic ring directed between C13 and A14 on the partner strand. The observed NOE between the H2 proton of A14 and the imino proton of G4, but not G6, establishes that A14 at the lesion site is directed toward the G4.C15 base pair. NOEs are detected between all exocyclic CH2 protons of X5 and the H2 proton of A14, confirming that both X5 and A14 are directed toward the interior of the helix. The X5(anti).A14(anti) alignment at pH 8.9 is accommodated within the helix with retention of Watson-Crick pairing at flanking G4.C15 and G6.C13 base pairs. The energy-minimized conformation of the (G4-X5-G6).(C13-A14-C15) segment at pH 8.9 establishes that X5 and A14 are directed into the helix, partially stack on each other, and are not stabilized by intermolecular hydrogen bonds. The X5 base is partially intercalated between C13 and A14 on the unmodified strand, while A14 is partially intercalated between G4 and X5 on the modified strand. This results in a larger separation between the G4.C15 and G6.C13 base pairs flanking the lesion site in the basic pH conformation of the X.A 9-mer duplex. The midpoint of the transition between the protonated X5(syn).A14(anti) and X5(anti).A14(anti) conformations occurs at pH 7.6, establishing an unusually high pKa for protonation of the A14 ring opposite the X5 exocyclic adduct site. Thus, the interplay between hydrophobic and hydrogen-bonding contributions modulated by pH defines the alignment of 1,N2-propanodeoxyguanosine opposite deoxyadenosine in the interior of DNA helices.  相似文献   
94.
The cytosolic pathogen sensor RIG‐I is activated by RNAs with exposed 5′‐triphosphate (5′‐ppp) and terminal double‐stranded structures, such as those that are generated during viral infection. RIG‐I has been shown to translocate on dsRNA in an ATP‐dependent manner. However, the precise role of the ATPase activity in RIG‐I activation remains unclear. Using in vitro‐transcribed Sendai virus defective interfering RNA as a model ligand, we show that RIG‐I oligomerizes on 5′‐ppp dsRNA in an ATP hydrolysis‐dependent and dsRNA length‐dependent manner, which correlates with the strength of type‐I interferon (IFN‐I) activation. These results establish a clear role for the ligand‐induced ATPase activity of RIG‐I in the stimulation of the IFN response.  相似文献   
95.
96.
Structural features of pyrimidine.pyrimidine mismatches in the interior of oligonucleotide duplexes have been investigated by high resolution two-dimensional proton nuclear magnetic resonance (n.m.r.) spectroscopy. These studies were conducted on the self-complementary d(C-G-C-T-A-G-C-T-T-G-C-G) duplex (designated T.T 12-mer) and the self-complementary d(C-G-C-C-A-G-C-T-C-G-C-G) duplex (designated C.C 12-mer) containing T.T and C.C pairs located at identical positions four base-pairs from either end of the duplex. Proton n.m.r. studies on the T.T 12-mer duplex were undertaken in the neutral pH range, while studies on the C.C 12-mer duplex were recorded at acidic pH. The proton spectra narrowed considerably on lowering the pH below neutrality for the C.C 12-mer duplex. Two-dimensional nuclear Overhauser enhancement spectroscopy (NOESY) data sets have been recorded on the T.T 12-mer and C.C 12-mer duplexes in high salt H2O and D2O solution. The magnitude of the NOE crosspeaks and the directionality of the NOE connectivities demonstrate that both duplexes are right-handed with all bases, including those at the mismatch site, adopting an anti configuration about the glycosidic bond. The observed base and sugar proton chemical shifts suggest structural similarities for the trinucleotide segments centered about the T.T and C.C mismatches. A NOE is detected between the resolved imino protons of T4 and T9 at the mismatch site, consistent with formation of a stacked "wobble" T4(anti).T9(anti) pair in the T.T 12-mer duplex. A comparison of the imino proton chemical shift and NOE data suggests that the imino-carbonyl hydrogen bonds in the wobble T.T mismatch are weaker than the corresponding imino-carbonyl hydrogen bonds in the wobble G.T mismatch. The 4-amino protons of C4 and C9 at the mismatch site in the C.C 12-mer duplex do not exhibit the pattern of hydrogen-bonded and exposed protons separated by approximately 1.5 parts per million characteristic of cytidine amino protons involved in Watson-Crick G.C pairing. The experimental data are insufficient to differentiate between wobble C(anti).C+(anti) and other pairing possibilities for the mismatch in the C.C 12-mer duplex at acidic pH.  相似文献   
97.
Glucokinase activators represent a promising potential treatment for patients with Type 2 diabetes. Herein, we report the identification and optimization of a series of novel indazole and pyrazolopyridine based activators leading to the identification of 4-(6-(azetidine-1-carbonyl)-5-fluoropyridin-3-yloxy)-2-ethyl-N-(5-methylpyrazin-2-yl)-2H-indazole-6-carboxamide (42) as a potent activator with favorable preclinical pharmacokinetic properties and in vivo efficacy.  相似文献   
98.
99.
SEPALLATA3: the 'glue' for MADS box transcription factor complex formation   总被引:1,自引:0,他引:1  

Background  

Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation capacity of the Arabidopsis MADS box family. SEPALLATA3 (SEP3) has been shown to mediate complex formation and, therefore, special attention is paid to this factor in this study.  相似文献   
100.
Ubiquitin-interacting motifs (UIMs) are an important class of protein domains that interact with ubiquitin or ubiquitin-like proteins. These approximately 20-residue-long domains are found in a variety of ubiquitin receptor proteins and serve as recognition modules towards intracellular targets, which may be individual ubiquitin subunits or polyubiquitin chains attached to a variety of proteins. Previous structural studies of interactions between UIMs and ubiquitin have shown that UIMs adopt an extended structure of a single α-helix, containing a hydrophobic surface with a conserved sequence pattern that interacts with key hydrophobic residues on ubiquitin. In light of this large body of structural studies, details regarding the presence and the roles of structural dynamics and plasticity are surprisingly lacking. In order to better understand the structural basis of ubiquitin-UIM recognition, we have characterized changes in the structure and dynamics of ubiquitin upon binding of a UIM domain from the yeast Vps27 protein. The solution structure of a ubiquitin-UIM fusion protein designed to study these interactions is reported here and found to consist of a well-defined ubiquitin core and a bipartite UIM helix. Moreover, we have studied the plasticity of the docking interface, as well as global changes in ubiquitin due to UIM binding at the picoseconds-to-nanoseconds and microseconds-to-milliseconds protein motions by nuclear magnetic resonance relaxation. Changes in generalized-order parameters of amide groups show a distinct trend towards increased structural rigidity at the UIM-ubiquitin interface relative to values determined in unbound ubiquitin. Analysis of 15N Carr-Purcell-Meiboom-Gill relaxation dispersion measurements suggests the presence of two types of motions: one directly related to the UIM-binding interface and the other induced to distal parts of the protein. This study demonstrates a case where localized interactions among protein domains have global effects on protein motions at timescales ranging from picoseconds to milliseconds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号