首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   545篇
  免费   49篇
  国内免费   1篇
  595篇
  2023年   4篇
  2022年   3篇
  2021年   8篇
  2020年   5篇
  2019年   11篇
  2018年   14篇
  2017年   17篇
  2016年   12篇
  2015年   33篇
  2014年   38篇
  2013年   39篇
  2012年   41篇
  2011年   23篇
  2010年   26篇
  2009年   19篇
  2008年   33篇
  2007年   18篇
  2006年   17篇
  2005年   29篇
  2004年   25篇
  2003年   21篇
  2002年   22篇
  2001年   12篇
  2000年   15篇
  1999年   7篇
  1998年   11篇
  1997年   4篇
  1996年   7篇
  1995年   11篇
  1994年   2篇
  1993年   4篇
  1992年   7篇
  1991年   7篇
  1990年   3篇
  1989年   5篇
  1988年   5篇
  1987年   6篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1952年   1篇
  1912年   1篇
  1866年   1篇
  1854年   1篇
排序方式: 共有595条查询结果,搜索用时 15 毫秒
31.
The aim of this study was to extract Allium ursinum L. for the first time by supercritical carbon dioxide (SC−CO2) as green sustainable method. The impact of temperature in the range from 40 to 60 °C and pressure between 150 and 400 bar on the quality of the obtained extracts and efficiency of the extraction was investigated. The highest extraction yield (3.43 %) was achieved by applying the extraction conditions of 400 bar and 60 °C. The analysis of the extracts was performed by gas chromatography and mass spectrometry (GC/MS). The most dominant sulfur-containing constituent of the extracts was allyl methyl trisulfide with the highest abundance at 350 bar and 50 °C. In addition, the presence of other pharmacologically potent sulfur compounds was recorded including S-methyl methanethiosulfinate, diallyl trisulfide, S-methyl methylthiosulfonate, and dimethyl trisulfide. Multivariate data analysis tool was utilized to investigate distributions of the identified compounds among the extracts obtained under various extraction conditions and yields. It was determined that the SC−CO2 extraction can by efficiently used for A. ursinum.  相似文献   
32.
Extracellular deposition as amyloids of immunoglobulin light chains causes light chain amyloidosis. Among the light chain families, lambda 6a is one of the most frequent in light chain amyloidosis patients. Its germline protein, 6aJL2, and point mutants, R24G and P7S, are good models to study fibrillogenesis, because their stability and fibril formation characteristics have been described. Both mutations make the germline protein unstable and speed up its ability to aggregate. To date, there is no molecular mechanism that explains how these differences in amyloidogenesis can arise from a single mutation. To look into the structural and dynamical differences in the native state of these proteins, we carried out molecular dynamics simulations at room temperature. Despite the structural similarity of the germline protein and the mutants, we found differences in their dynamical signatures that explain the mutants’ increased tendency to form amyloids. The contact network alterations caused by the mutations, though different, converge in affecting two anti‐aggregation motifs present in light chain variable domains, suggesting a different starting point for aggregation in lambda chains compared to kappa chains.  相似文献   
33.
34.
Kv channels detect changes in the membrane potential via their voltage-sensing domains (VSDs) that control the status of the S6 bundle crossing (BC) gate. The movement of the VSDs results in a transfer of the S4 gating charges across the cell membrane but only the last 10–20% of the total gating charge movement is associated with BC gate opening, which involves cooperative transition(s) in the subunits. Substituting the proline residue P475 in the S6 of the Shaker channel by a glycine or alanine causes a considerable shift in the voltage-dependence of the cooperative transition(s) of BC gate opening, effectively isolating the late gating charge component from the other gating charge that originates from earlier VSD movements. Interestingly, both mutations also abolished Shaker’s sensitivity to 4-aminopyridine, which is a pharmacological tool to isolate the late gating charge component. The alanine substitution (that would promote a α-helical configuration compared to proline) resulted in the largest separation of both gating charge components; therefore, BC gate flexibility appears to be important for enabling the late cooperative step of channel opening.  相似文献   
35.
Expansins are a family of proteins with plant cell wall remodeling‐activity, which bind cell wall components through hydrophobic and electrostatic interactions. A shallow area on the surface of the protein serves as the polysaccharide binding site (PBS) and it is composed of conserved residues. However, electric charge differences on the opposite face of the PBS produce basic, neutral, or acidic proteins. An analysis of forty‐four bacterial expansins, homologues of BsEXLX1, revealed two main groups defined by: (a) the presence or absence of disulfide bonds; and (b) by the proteins isoelectric point (pI). We determined the location of the residues responsible for the pI on the structure of representative expansins. Our results suggest that the electric charge at the opposite site of the PBS may help in substrate differentiation among expansins from different species; in addition, electrostatic polarization between the front and the back of the molecule could affect expansin activity on cellulose. Proteins 2015; 83:215–223. © 2014 Wiley Periodicals, Inc.  相似文献   
36.

Introduction

The purpose of this study was to evaluate the effects of L-4F, an apolipoprotein A-1 mimetic peptide, alone or with pravastatin, in apoE-/-Fas-/-C57BL/6 mice that spontaneously develop immunoglobulin G (IgG) autoantibodies, glomerulonephritis, osteopenia, and atherosclerotic lesions on a normal chow diet.

Methods

Female mice, starting at eight to nine weeks of age, were treated for 27 weeks with 1) pravastatin, 2) L-4F, 3) L-4F plus pravastatin, or 4) vehicle control, followed by disease phenotype assessment.

Results

In preliminary studies, dysfunctional, proinflammatory high-density lipoproteins (piHDL) were decreased six hours after a single L-4F, but not scrambled L-4F, injection in eight- to nine-week old mice. After 35 weeks, L-4F-treated mice, in the absence/presence of pravastatin, had significantly smaller lymph nodes and glomerular tufts (PL, LP < 0.05), lower serum levels of IgG antibodies to double stranded DNA (dsDNA) (PL < 0.05) and oxidized phospholipids (oxPLs) (PL, LP < 0.005), and elevated total and vertebral bone mineral density (PL, LP < 0.01) compared to vehicle controls. Although all treatment groups presented larger aortic root lesions compared to vehicle controls, enlarged atheromas in combination treatment mice had significantly less infiltrated CD68+ macrophages (PLP < 0.01), significantly increased mean α-actin stained area (PLP < 0.05), and significantly lower levels of circulating markers for atherosclerosis progression, CCL19 (PL, LP < 0.0005) and VCAM-1 (PL < 0.0002).

Conclusions

L-4F treatment, alone or with pravastatin, significantly reduced IgG anti-dsDNA and IgG anti-oxPLs, proteinuria, glomerulonephritis, and osteopenia in a murine lupus model of accelerated atherosclerosis. Despite enlarged aortic lesions, increased smooth muscle content, decreased macrophage infiltration, and decreased pro-atherogenic chemokines in L-4F plus pravastatin treated mice suggest protective mechanisms not only on lupus-like disease, but also on potential plaque remodeling in a murine model of systemic lupus erythematosus (SLE) and accelerated atherosclerosis.  相似文献   
37.
Internal ribosomal entry sites (IRESs) are structured cis‐acting RNAs that drive an alternative, cap‐independent translation initiation pathway. They are used by many viruses to hijack the translational machinery of the host cell. IRESs facilitate translation initiation by recruiting and actively manipulating the eukaryotic ribosome using only a subset of canonical initiation factor and IRES transacting factors. Here we present cryo‐EM reconstructions of the ribosome 80S‐ and 40S‐bound Hepatitis C Virus (HCV) IRES. The presence of four subpopulations for the 80S•HCV IRES complex reveals dynamic conformational modes of the complex. At a global resolution of 3.9 Å for the most stable complex, a derived atomic model reveals a complex fold of the IRES RNA and molecular details of its interaction with the ribosome. The comparison of obtained structures explains how a modular architecture facilitates mRNA loading and tRNA binding to the P‐site. This information provides the structural foundation for understanding the mechanism of HCV IRES RNA‐driven translation initiation.  相似文献   
38.
Bacterial lipases are attracting an enormous amount of attention due to their wide biotechnological applications and due to their roles as virulence factors in some bacteria. Helicobacter pylori is a significant and widespread pathogen which produces a lipase(s) and phospholipases that seem to play a role in mucus degradation and the release of proinflammatory and cytotoxic compounds. However, no H. pylori lipase(s) has been isolated and described previously. Therefore, a search for putative lipase-encoding genes was performed by comparing the amino acid sequences of 53 known lipolytic enzymes with the deduced proteome of H. pylori. As a result, we isolated, cloned, purified, and characterized EstV, a novel lipolytic enzyme encoded by open reading frame HP0739 of H. pylori 26695, and classified it in family V of the bacterial lipases. This enzyme has the properties of a small, cell-bound carboxylesterase (EC 3.1.1.1) that is active mostly with short-chain substrates and does not exhibit interfacial activation. EstV is stable and does not require additional cofactors, and the maximum activity occurs at 50 degrees C and pH 10. This unique enzyme is the first lipase isolated from H. pylori that has been described, and it might contribute to ulcer development, as inhibition by two antiulcer substances (beta-aescin and glycyrrhizic acid) suggests. EstV is also the first lipase from an epsilon-proteobacterium to be described. Furthermore, this enzyme is a new member of family V, probably the least-known family of bacterial lipases, and the first lipase of this family for which kinetic behavior, inhibition by natural substances, and other key biochemical features are reported.  相似文献   
39.
The hepatopulmonary syndrome is a complication of cirrhosis that associates an overproduction of nitric oxide (NO) in lungs and a NO defect in the liver. Because endothelial NO synthase (eNOS) is regulated by caveolin that decreases and heat shock protein 90 (HSP90) that increases NO production, we hypothesized that an opposite regulation of eNOS by caveolin and HSP90 might explain the opposite NO production in both organs. Cirrhosis was induced by a chronic bile duct ligation (CBDL) performed 15, 30, and 60 days before sample collection and pharmacological tests. eNOS, caveolin, and HSP90 expression were measured in hepatic and lung tissues. Pharmacological tests to assess NO released by shear stress and by acetylcholine were performed in livers (n = 28) and lungs (n = 28) isolated from normal and CBDL rats. In lungs from CBDL rats, indirect evidence of high NO production induced by shear stress was associated with a high binding of HSP90 and a low binding of caveolin to eNOS. Opposite results were observed in livers from CBDL rats. Our study shows an opposite posttranslational regulation of eNOS by HSP90 and caveolin in lungs and liver from rats with CBDL. Such opposite posttranslational regulation of eNOS by regulatory proteins may explain in part the pulmonary overproduction of NO and the hepatic NO defect in rats with hepatopulmonary syndrome.  相似文献   
40.
The sequence of gene xynB encoding xylanase B from Paenibacillus sp. BP-23 was determined. It revealed an open reading frame of 999 nucleotides encoding a protein of 38,561 Da. The deduced amino acid sequence of xylanase B shows that the N-terminal region of the enzyme lacks the features of a signal peptide. When the xylan-degrading system of Paenibacillus sp. BP-23 was analysed in zymograms, it revealed that xylanase B was not secreted to the extracellular medium but instead remained cell-associated, even in late stationary-phase cultures. When xynB was expressed in a Bacillus subtilis secreting host, it also remained associated with the cells. Sequence homology analysis showed that xylanase B from Paenibacillus sp. BP-23 belongs to family 10 glycosyl hydrolases, exhibiting a distinctive high homology to six xylanases of this family. The homologous enzymes were also found to be devoid of a signal peptide and seem to constitute, together with xylanase B, a separate group of enzymes. They all have two conserved amino acid regions not found in the other family 10 xylanases, and cluster in a separate group after dendrogram analysis. We propose that these enzymes constitute a new subclass of family 10 xylanases, that are cell-associated, and that hydrolyse the xylooligosaccharides resulting from extracellular xylan hydrolysis. Xylanase B shows similar specific activity on aryl-xylosides and xylans. This can be correlated to some, not yet identified, trait of catalytic activity of the enzyme on plant xylan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号