首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   45篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   7篇
  2000年   6篇
  1999年   15篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   16篇
  1991年   13篇
  1990年   24篇
  1989年   20篇
  1988年   18篇
  1987年   10篇
  1986年   15篇
  1985年   14篇
  1984年   11篇
  1983年   13篇
  1982年   10篇
  1981年   18篇
  1980年   14篇
  1979年   14篇
  1978年   13篇
  1977年   10篇
  1976年   10篇
  1975年   3篇
  1974年   8篇
  1973年   9篇
  1972年   7篇
  1971年   7篇
  1970年   3篇
  1969年   6篇
  1968年   4篇
  1967年   6篇
  1966年   2篇
排序方式: 共有380条查询结果,搜索用时 437 毫秒
11.
35S-Labeled adenovirus type 2 (Ad2) (10 ng/ml) was incubated with 1% Triton X-114 at various pH values varying from 3.0 to 8.0. The detergent phase was separated from the aqueous phase by centrifugation, and the amounts of Ad2 were determined in the two phases. At pH 7.0-8.0, less than 5% of Ad2 was associated with the detergent phase; at pH 5.0 or below, about 60% of Ad2 was associated with the detergent phase. When a mixture of 35S-labeled capsid proteins was used at pH 7.0, 60-70% of the total proteins were associated with the detergent at pH 5.0, but less than 5% of the proteins interacted with detergent at pH 7.0. Among the three major external proteins (hexon, penton base, and fiber), penton base had the highest association with Triton X-114 at pH 5.0. Both intact virus and the capsid proteins that were associated with Triton X-114 at pH 5.0 were released into the aqueous phase on subsequent incubation at pH 7.0. On the basis of these results, it is suggested that mildly acidic pH induces amphiphilic properties in adenovirus capsid proteins and may help Ad2 escape from acidic endocytic vesicles.  相似文献   
12.
Binding sites having the properties of high-affinity receptors for activated alpha 2-macroglobulin (alpha 2M) have been purified over 100-fold from membranes of spontaneously transformed NIH-3T3 cells (J. A. Hanover, S.-y. Cheng, M. C. Willingham, and I. H. Pastan [1983] J. Biol. Chem. 258, 370-377). To identify the molecular species involved in high-affinity binding, the solubilized receptor has been purified 500-fold by conventional procedures and further purified by affinity chromatography. After radioiodination of the 500-fold-purified preparation, the detergent-solubilized extract was applied to alpha 2M-Sepharose and an 85,000 +/- 5000 Mr species was selectively retained by the column. Binding of the 85,000 +/- 5000 Mr species to the affinity resin was inhibited by EDTA and by excess alpha 2M. Elution from the affinity column could be accomplished with bacitracin, a competitive inhibitor of alpha 2M binding, or with EDTA. Consistent with the previously reported characteristics of the high-affinity alpha 2M receptor, the 85,000 Mr species bound much more efficiently to methylamine-activated alpha 2M-Affigel than to alpha 2M-Affigel which had not been amine-activated. The present data suggest that a protein with a subunit Mr of 85,000 +/- 5000 may represent a component of the high-affinity alpha 2M receptor present on cultured fibroblasts.  相似文献   
13.
Using a rat monoclonal antibody directed against the p21 src protein of the Harvey strain of Murine Sarcoma Virus (MSV), we have examined the reactivity of human cells in tissue culture using immunofluorescence and electron microscopy. Qualitative results indicated that untransformed mouse and human fibroblastic cells have undetectable amounts of p21; these levels were greatly increased after transformation with Harvey MSV. A group of human tumor cell lines adapted to tissue culture were examined and almost all of the epithelial tumor lines showed significant localization with this antibody. Notable exceptions were two melanoma cell lines which were negative for p21 by immunofluorescence. When normal human epithelial cells derived from esophageal or foreskin epithelium were examined, the antibody showed significant reactivity with subconfluent growing cells. After the normal cells were allowed to become quiescent, the reactivity with this antibody decreased. All of the localization seen by fluorescence was in a distribution consistent with the previously demonstrated location of p21 scr on the inner aspect of the plasma membrane. Electron microscope localization showed labeling for this antigen on the inner surface of the plasma membrane in both transformed mouse cells and in the human tumor cell lines MCF-7 and HTB-2 (RT4). These results suggest that the amounts of p21-like proteins detectable in human epithelial tumor cells do not necessarily reflect their malignant potential, but may be related to their epithelial nature. The loss of detectable localization at quiescence suggests that p21 levels decrease when these epithelial cells stop growing, and raises the possibility that an analog of p21 may be used by these human epithelial cells to regulate cell growth.  相似文献   
14.
Treatment of growing Rous sarcoma virus-transformed Chinese hamster ovary cells with the cyclic AMP analog 8-bromo-cyclic adenosine 3',5'-monophosphate (8-bromo-cyclic AMP) stimulates the incorporation of 32Pi into the viral transforming protein pp60src. Based on one-dimensional and two-dimensional peptide analysis and phosphoamino acid analysis, the increase is on a single phosphoserine residue at the NH2 terminus of the protein. The phosphate incorporation increases during the first 4 h of treatment. The pp60src kinase activity in extracts of cells treated with 8-bromo-cyclic AMP was stimulated about 2- to 3-fold. This stimulation of kinase activity increased during the first 3 h of treatment with 1 mM 8-bromo-cAMP and the activity was increased in both the soluble and particulate fraction of the cells. These results suggest that cyclic AMP can modulate the activity of pp60src in transformed cells.  相似文献   
15.
Myosin in cultured fibroblasts   总被引:10,自引:0,他引:10  
  相似文献   
16.
The virally encoded proteases from human immunodeficiency virus (HIV) and avian myeloblastosis virus (AMV) have been compared relative to their ability to hydrolyze a variant of the three-domain Pseudomonas exotoxin, PE66. This exotoxin derivative, missing domain I and referred to as LysPE40, is made up of a 13-kilodalton NH2-terminal translocation domain II connected by a segment of 40 amino acids to enzyme domain III of the toxin, a 23-kilodalton ADP-ribosyltransferase. HIV protease hydrolyzes two peptide bonds in LysPE40, a Leu-Leu bond in the interdomain region and a Leu-Ala bond in a nonstructured region three residues in from the NH2-terminus. Neither of these sites is cleaved by the AMV enzyme; hydrolysis occurs, instead, at an Asp-Val bond in another part of the interdomain segment and at a Leu-Thr bond in the NH2-terminal region of domain II. Synthetic peptides corresponding to these cleavage sites are hydrolyzed by the individual proteases with the same specificity displayed toward the protein substrate. Peptide substrates for one protease are neither substrates nor competitive inhibitors for the other. A potent inhibitor of HIV type 1 protease was more than 3 orders of magnitude less active toward the AMV enzyme. These results suggest that although the crystallographic models of Rous sarcoma virus protease (an enzyme nearly identical to the AMV enzyme) and HIV type 1 protease show a high degree of similarity, there exist structural differences between these retroviral proteases that are clearly reflected by their kinetic properties.  相似文献   
17.
Deletion and insertion mutants of the multidrug transporter   总被引:5,自引:0,他引:5  
The multidrug transporter is a 170,000-dalton membrane glycoprotein which confers multidrug resistance through its activity as an ATP-dependent efflux pump for hydrophobic, cytotoxic drugs. To determine the essential structural components of this complex membrane transporter we have altered an MDR1 cDNA in an expression vector by deletion and insertion mutations. The structure of the transporter deduced from its amino acid sequence suggests that it consists of two homologous, perhaps functionally autonomous, halves each with six transmembrane segments and a cytoplasmic ATP-binding domain. However, several carboxyl-terminal deletions, one involving 53 amino acids, the second removing 253 amino acids, and an internal deletion within the carboxyl-terminal half of the molecule, totally eliminate the ability of the mutant transporter to confer drug resistance. An internal deletion of the amino-terminal half, which removed residues 140-229, is also nonfunctional. Small carboxylterminal deletions of up to 23 amino acids leave a functional transporter, although the removal of 23 COOH-terminal amino acids reduces its ability to confer colchicine resistance. Insertions of 4 amino acids in a transmembrane domain, and in one of the two ATP-binding regions, have no effect on activity. These studies define some of the limits of allowable deletions and insertions in the MDR1 gene, and demonstrate the requirement for two intact halves of the molecule for a functional multidrug transporter.  相似文献   
18.
Expression of a multidrug resistance-adenosine deaminase fusion gene   总被引:9,自引:0,他引:9  
A novel fusion gene has been created in which the expression of a dominant selectable marker, the human multidrug resistance gene, is directly linked to the expression of human adenosine deaminase cDNA. The chimeric gene was inserted between the long terminal repeats of a Harvey murine sarcoma virus expression vector and used to transfect drug-sensitive human KB carcinoma cells. Transfectants were selected in increasing concentrations of colchicine and found to contain multiple copies of the intact fusion gene, which is stably and efficiently expressed. A membrane-associated 210-kDa human P-glycoprotein-adenosine deaminase fusion protein is synthesized which retains function of the multidrug transporter and also exhibits adenosine deaminase activity. The data indicate that the human multidrug resistance gene may be used as a dominant selectable marker to introduce other genes in the form of gene fusions into cultured cells.  相似文献   
19.
Domain II mutants of Pseudomonas exotoxin deficient in translocation   总被引:16,自引:0,他引:16  
Pseudomonas exotoxin (PE) kills mammalian cells in a complex process that involves cell surface binding, internalization by endocytosis, translocation to the cytosol, and ADP-ribosylation of elongation factor 2. PE is a three-domain protein in which domain I binds to the cell surface, domain II promotes translocation into the cytosol, and domain III carries out ADP-ribosylation. To determine how translocation occurs, we have mutated all the arginine residues in domain II and found that mutations at positions 276 and 279 greatly diminished the cytotoxicity of PE and mutations 330 and 337 substantially reduced cytotoxicity. Biochemical studies indicate that after internalization into an endocytic compartment, the PE molecule undergoes a specific and saturable intracellular interaction, and this interaction is deficient in an Arg276----Gly mutant. Our data suggest that the translocation process of PE involves a specific interaction of Arg276 (and possibly Arg279, Arg330, and Arg337) with components of an intracellular compartment.  相似文献   
20.
Pseudomonas exotoxin: chimeric toxins   总被引:17,自引:0,他引:17  
Pseudomonas exotoxin binds to and enters cells by receptor-mediated endocytosis. Within the cell it requires exposure to low pH to enable it to translocate to the cell cytoplasm where it inhibits protein synthesis by ADP-ribosylating elongation factor 2. The toxin has three main structural domains whose functions are: Ia, cell binding; II, translocation; and III, ADP-ribosylation. Key amino acids have been identified within each domain that are required for the function of the toxin. Chimeric toxins were made originally by using chemical cross-linking reagents to couple Pseudomonas exotoxin (or other toxins) to cell-binding proteins. More recently, a variety of Pseudomonas exotoxin-related chimeric toxins have been made by gene fusion technology. These chimeric toxins may be useful clinically for treating various diseases and experimentally for understanding receptor function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号