首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1202篇
  免费   73篇
  国内免费   1篇
  1276篇
  2023年   7篇
  2022年   19篇
  2021年   23篇
  2020年   20篇
  2019年   27篇
  2018年   26篇
  2017年   24篇
  2016年   36篇
  2015年   44篇
  2014年   67篇
  2013年   81篇
  2012年   83篇
  2011年   83篇
  2010年   47篇
  2009年   38篇
  2008年   54篇
  2007年   64篇
  2006年   70篇
  2005年   50篇
  2004年   57篇
  2003年   54篇
  2002年   34篇
  2001年   15篇
  2000年   17篇
  1999年   20篇
  1998年   13篇
  1997年   14篇
  1995年   9篇
  1994年   11篇
  1993年   4篇
  1992年   8篇
  1991年   12篇
  1990年   8篇
  1989年   5篇
  1988年   15篇
  1987年   7篇
  1986年   9篇
  1985年   6篇
  1984年   10篇
  1983年   6篇
  1981年   10篇
  1980年   4篇
  1979年   14篇
  1978年   8篇
  1976年   5篇
  1975年   4篇
  1974年   6篇
  1973年   4篇
  1971年   4篇
  1969年   3篇
排序方式: 共有1276条查询结果,搜索用时 0 毫秒
71.
72.
Thymol is a natural biocide and component of some essential oils from herbs. Its inhibitory effect on the growth of different microorganisms is well documented. The precise targets of the antibacterial action of thymol is not yet been fully established, the action seems to take place in different ways. The strain Salmonella enterica serovar Thompson MCV1 was grown in the presence of a sublethal concentration (0.01%) of thymol. The proteins extracted from treated and untreated cells were subjected to 2‐D PAGE, followed by in‐gel spot digestion and subsequent MALDI‐TOF analysis. The analysis of gels showed many proteins that were either upregulated or downregulated by the presence of thymol, with significant changes in proteins belonging to different functional classes. In particular, the thioredoxin‐1 was not expressed in the treated cells, indicating that its absence could be a consequence of the stress caused by the presence of thymol. On the other hand, different chaperon proteins were upregulated or de novo synthesis such as GroEL and DnaK, key proteins in the protection mechanism toward thermal stress. Outer membrane proteins were upregulated in treated cells; indeed the bacterial envelope stress response is trigged by the accumulation of misfolded outer membrane proteins. Moreover, the thymol seems to impair the citrate metabolic pathway, as well as many enzymes involved in the synthesis of ATP. Definitely, thymol plays a role in altering very different pathways of cell metabolism.  相似文献   
73.
74.
Glutamine (gln) is the most abundant free amino acid in the blood. It is involved in important metabolic and biochemical processes, like cell proliferation and oxidative stress. Previous studies have demonstrated that gln concentration in human plasma decreases in several conditions such as sepsis, ischemia-reperfusion, trauma, major surgery and burn. The aim of the present work was to compare the acute effects of different types of surgical interventions and of anesthetization on blood gln concentration. Plasma samples from 88 subjects (30 males and 58 females) were collected before and after major or minor surgery and the gln concentration was analyzed with high-performance liquid chromatography. The results showed that plasma gln concentration after surgery was lower than pre-surgery values and that in major surgery the decrease of gln was higher than in minor surgery. No significant effect was shown for sex or type of anesthesia. These results demonstrate the importance of a gln supplementation before a surgical intervention and show that the amount of gln supplementation should also be adjusted based on the type of surgery.  相似文献   
75.
Although arachidonic acid has been demonstrated to stimulate a wide variety of cellular functions, the responsible mechanisms remain poorly defined. We now report that arachidonic acid stimulated the activity of class Ia phosphatidylinositol 3-kinase (PI3K) in human umbilical vein endothelial cells, HL60 cells, and human neutrophils. Pretreatment of endothelial cells with AG-1478, an inhibitor of the ErbB receptor family, resulted in the suppression of PI3K activation by arachidonic acid. The fatty acid enhanced the tyrosine phosphorylation of ErbB4 but not of ErbB2 or ErbB3. The ability of arachidonic acid to stimulate PI3K activity in neutrophils was suppressed by indomethacin and nordihydroguaiaretic acid, inhibitors of the cyclooxygenases and lipoxygenases, respectively, but not by 17-octadecynoic acid, an inhibitor of omega-hydroxylation of arachidonic acid by cytochrome P450 monooxygenases. Consistent with this, the activity of PI3K in neutrophils was stimulated by 5-hydroxyeicosatetraenoic acid. Arachidonic acid also transiently stimulated the phosphorylation of Akt on Thr-308 and Ser-473. Although PI3K was not required for the activation of the mitogen-activated protein kinases, ERK1, ERK2, and p38, in arachidonic acid-stimulated neutrophils, the fatty acid acted via PI3K to stimulate the respiratory burst. These results not only define a novel mechanism through which some of the actions of arachidonic acid are mediated but also demonstrate that, in addition to ErbB1 (epidermal growth factor receptor), ErbB4 can also be transactivated by a non-epidermal growth factor-like ligand.  相似文献   
76.
EphB2 is a receptor tyrosine kinase of the Eph family and ephrin-B1 is one of its transmembrane ligands. In the embryo, EphB2 and ephrin-B1 participate in neuronal axon guidance, neural crest cell migration, the formation of blood vessels, and the development of facial structures and the inner ear. Interestingly, EphB2 and ephrin-B1 can both signal through their cytoplasmic domains and become tyrosine-phosphorylated when bound to each other. Tyrosine phosphorylation regulates EphB2 signaling and likely also ephrin-B1 signaling. Embryonic retina is a tissue that highly expresses both ephrin-B1 and EphB2. Although the expression patterns of EphB2 and ephrin-B1 in the retina are different, they partially overlap, and both proteins are substantially tyrosine-phosphorylated. To understand the role of ephrin-B1 phosphorylation, we have identified three tyrosines of ephrin-B1 as in vivo phosphorylation sites in transfected 293 cells stimulated with soluble EphB2 by using mass spectrometry and site-directed mutagenesis. These tyrosines are also physiologically phosphorylated in the embryonic retina, although the extent of phosphorylation at each site may differ. Furthermore, many of the tyrosines of EphB2 previously identified as phosphorylation sites in 293 cells (Kalo, M. S., and Pasquale, E. B. (1999) Biochemistry 38, 14396-14408) are also phosphorylated in retinal tissue. Our data underline the complexity of ephrin-Eph bidirectional signaling by implicating many tyrosine phosphorylation sites of the ligand-receptor complex.  相似文献   
77.
In spite of the knowledge of the nucleosome molecular structure, the role of DNA intrinsic curvature in determining nucleosome stabilization is still an open question. In this paper, we describe a general model that allows the prediction of the nucleosome stability, tested on 83 different DNA sequences, in surprising good agreement with the experimental data, carried out in ours as well as in many other laboratories. The model is based on the dual role of DNA curvature in nucleosome thermodynamic stabilization. A critical test is the evaluation of the nucleosome free energy relative to a Crithidia fasciculata kinetoplast DNA fragment, which represents the most curved DNA found so far in biological systems and, therefore, is generally believed to form a highly stable nucleosome.  相似文献   
78.
Eph receptors in the adult brain   总被引:8,自引:0,他引:8  
The Eph receptors are a large family of receptor tyrosine kinases with important roles in the establishment of neuronal and vascular networks during embryonic development. The functions of Eph receptors in the adult brain have only recently been investigated, and the results are forcing us to amend the conventional view that these molecules function predominantly in a developmental context. This review summarizes this rapidly expanding new area of research, which has shown that the Eph receptors regulate the structure and physiological function of excitatory synapses through multiple mechanisms, and might thus play a significant role in higher brain functions.  相似文献   
79.
In humans, regional myocardial dysfunction during ischemia may be improved by ischemic and pharmacological preconditioning. We assessed the possibility that exercise- and nitroglycerin-induced myocardial preconditioning may improve global cardiac performance during subsequent efforts in patients with angina. Ten patients suffering from chronic stable angina and ten healthy volunteers were studied. Through impedance cardiography we assessed hemodynamics during a maximal exercise test, which was used as a baseline (Bas test) and considered as a preconditioning exercise. The Bas test was followed by a sequence of maximal efforts performed during the first (FWOP; 30 min after the Bas test) and second (SWOP; 48 h after the Bas test) windows of protection conferred by ischemic preconditioning. Hemodynamics was further evaluated during maximal exercise performed 48 h later with pharmacologically induced SWOP (PI-SWOP) obtained by transdermal administration of 10 mg of nitroglycerin. In the angina patients, FWOP, SWOP, and PI-SWOP delayed the time to ischemia and allowed them to achieve higher workloads compared with the Bas test. Furthermore, heart rate and cardiac output at peak exercise were enhanced during all the preconditioning phases with respect to the Bas test. However, only SWOP and PI-SWOP increased myocardial contractility and stroke volume. No changes in hemodynamics were detectable in the control subjects. This study demonstrates that in patients with stable angina, although hemodynamics during exercise can be positively improved during both FWOP and SWOP, differences exist between these two phases. Furthermore, the mimicking of exercise-induced SWOP by PI-SWOP with transdermal nitroglycerin may represent an important clinical aspect.  相似文献   
80.
Leaf pigments, such as chlorophyll and carotenoids, are essential plant molecules. They provide carbohydrates and energy during all plant life. Leaf pigments are also important parameters of decorative plants, such as floriculture items, cut foliage and flowers. Leaf yellowing is a form of senescence caused by an internal hormone imbalance, such as a lack of cytokinins. The aim of this study was to investigate the changes in total carotenoids and endogenous ABA in cut flower stock leaves during post-harvest life. The effect of pulse treatment with 5 or 10 M thidiazuron (TDZ), 150 mg l–1 8-hydroxyquinoline sulphate (8-HQS) and combinations of TDZ with 8-HQS on total carotenoids and ABA concentration was also investigated. Results showed that total carotenoids drastically decreased from 1548 g cm–2, until reaching 565 g cm–2 at the end of vase life. Endogenous ABA strongly increased at the same time, going from 167 ng g–1 DW at the beginning of the experiment to 1322 ng g–1 DW at the end of vase life. The TDZ inhibited carotenoid degradation, but did not affect the ABA concentration, while the 8-HQS did not prevent carotenoid degradation and the ABA concentration was only slightly affected. ABA seems to be a secondary senescence bio-product that may have a synergic effect with other senescence inducers dramatically accelerating leaf senescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号