首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   12篇
  143篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   5篇
  2017年   4篇
  2016年   9篇
  2015年   2篇
  2014年   9篇
  2013年   10篇
  2012年   12篇
  2011年   10篇
  2010年   6篇
  2009年   10篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   4篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
141.
Assessment of plastic and heritable components of phenotypic variation is crucial for understanding the evolution of adaptive character traits in heterogeneous environments. We assessed the above in relation to adaptive shell morphology of the rocky intertidal snail Nucella lapillus by reciprocal transplantation of snails between two shores differing in wave action and rearing snails of the same provenance in a common garden. Results were compared with those reported for similar experiments conducted elsewhere. Microsatellite variation indicated limited gene flow between the populations. Intrinsic growth rate was greater in exposed-site than sheltered-site snails, but the reverse was true of absolute growth rate, suggesting heritable compensation for reduced foraging opportunity at the exposed site. Shell morphology of reciprocal transplants partially converged through plasticity toward that of native snails. Shell morphology of F(2)s in the common garden partially retained characteristics of the P-generation, suggesting genetic control. A maternal effect was revealed by greater resemblance of F(1)s than F(2)s to the P-generation. The observed synergistic effects of plastic, maternal and genetic control of shell-shape may be expected to maximise fitness when environmental characteristics become unpredictable through dispersal.  相似文献   
142.
We examined the potential long-term impacts of riparian plant diversity loss on diversity and activity of aquatic microbial decomposers. Microbial assemblages were obtained in a mixed-forest stream by immersion of mesh bags containing three leaf species (alder, oak and eucalyptus), commonly found in riparian corridors of Iberian streams. Simulation of species loss was done in microcosms by including a set of all leaf species, retrieved from the stream, and non-colonized leaves of three, two or one leaf species. Leaves were renewed every month throughout six months, and microbial inoculum was ensured by a set of colonized leaves from the previous month. Microbial diversity, leaf mass loss and fungal biomass were assessed at the second and sixth months after plant species loss. Molecular diversity of fungi and bacteria, as the total number of operational taxonomic units per leaf diversity treatment, decreased with leaf diversity loss. Fungal biomass tended to decrease linearly with leaf species loss on oak and eucalyptus, suggesting more pronounced effects of leaf diversity on lower quality leaves. Decomposition of alder and eucalyptus leaves was affected by leaf species identity, mainly after longer times following diversity loss. Leaf decomposition of alder decreased when mixed with eucalyptus, while decomposition of eucalyptus decreased in mixtures with oak. Results suggest that the effects of leaf diversity on microbial decomposers depended on leaf species number and also on which species were lost from the system, especially after longer times. This may have implications for the management of riparian forests to maintain stream ecosystem functioning.  相似文献   
143.

Background  

Glaucoma is a common disease but its molecular etiology is poorly understood. It involves retinal ganglion cell death and optic nerve damage that is often associated with elevated intraocular pressure. Identifying genes that modify glaucoma associated phenotypes is likely to provide insights to mechanisms of glaucoma. We previously reported glaucoma in DBA/2J mice caused by recessive alleles at two loci, isa and ipd, that cause iris stromal atrophy and iris pigment dispersion, respectively. A approach for identifying modifier genes is to study the effects of specific mutations in different mouse strains. When the phenotypic effect of a mutation is modified upon its introduction into a new strain, crosses between the parental strains can be used to identify modifier genes. The purpose of this study was to determine if the effects of the DBA/2J derived isa and ipd loci are modified in strain AKXD-28/Ty.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号