首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1824篇
  免费   150篇
  1974篇
  2023年   3篇
  2022年   15篇
  2021年   26篇
  2020年   14篇
  2019年   15篇
  2018年   23篇
  2017年   21篇
  2016年   44篇
  2015年   73篇
  2014年   90篇
  2013年   98篇
  2012年   158篇
  2011年   147篇
  2010年   88篇
  2009年   96篇
  2008年   116篇
  2007年   131篇
  2006年   110篇
  2005年   117篇
  2004年   92篇
  2003年   100篇
  2002年   94篇
  2001年   27篇
  2000年   10篇
  1999年   24篇
  1998年   25篇
  1997年   25篇
  1996年   24篇
  1995年   27篇
  1994年   21篇
  1993年   18篇
  1992年   24篇
  1991年   8篇
  1990年   13篇
  1989年   6篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   5篇
  1983年   4篇
  1979年   6篇
  1977年   1篇
  1973年   2篇
  1972年   2篇
  1969年   1篇
  1968年   4篇
  1966年   1篇
  1964年   3篇
  1957年   1篇
排序方式: 共有1974条查询结果,搜索用时 0 毫秒
41.
Double muscling is a trait previously described in several mammalian species including cattle and sheep and is caused by mutations in the myostatin (MSTN) gene (previously referred to as GDF8). Here we describe a new mutation in MSTN found in the whippet dog breed that results in a double-muscled phenotype known as the “bully” whippet. Individuals with this phenotype carry two copies of a two-base-pair deletion in the third exon of MSTN leading to a premature stop codon at amino acid 313. Individuals carrying only one copy of the mutation are, on average, more muscular than wild-type individuals (p = 7.43 × 10−6; Kruskal-Wallis Test) and are significantly faster than individuals carrying the wild-type genotype in competitive racing events (Kendall's nonparametric measure, τ = 0.3619; p ≈ 0.00028). These results highlight the utility of performance-enhancing polymorphisms, marking the first time a mutation in MSTN has been quantitatively linked to increased athletic performance.  相似文献   
42.
A large number of G protein-coupled receptors are palmitoylated on cysteine residues located in their carboxyl tail, but the general role of this post-translational modification remains poorly understood. Here we show that preventing palmitoylation of the V2 vasopressin receptor, by site-directed mutagenesis of cysteines 341 and 342, significantly delayed and decreased both agonist-promoted receptor endocytosis and mitogen-activated protein kinase activation. Pharmacological blockade of receptor endocytosis is without effect on the vasopressin-stimulated mitogen-activated protein kinase activity, excluding the possibility that the reduced kinase activation mediated by the palmitoylation-less mutant could result from altered receptor endocytosis. In contrast, two dominant negative mutants of beta-arrestin which inhibit receptor endocytosis also attenuated vasopressin-stimulated mitogen-activated protein kinase activity, suggesting that the scaffolding protein, beta-arrestin, represents the common link among receptor palmitoylation, endocytosis, and kinase activation. Coimmunoprecipitation and bioluminescence resonance energy transfer experiments confirmed that inhibiting receptor palmitoylation considerably reduced the vasopressin-stimulated recruitment of beta-arrestin to the receptor. Interestingly, the changes in beta-arrestin recruitment kinetics were similar to those observed for vasopressin-stimulated receptor endocytosis and mitogen-activated protein kinase activation. Taken together the results indicate that palmitoylation enhances the recruitment of beta-arrestin to the activated V2 vasopressin receptor thus facilitating processes requiring the scaffolding action of beta-arrestin.  相似文献   
43.
44.
45.
PDZ proteins organize multiprotein signaling complexes. According to current views, PDZ domains engage in protein-protein interactions. Here we show that the PDZ domains of several proteins bind phosphatidylinositol 4,5-bisphosphate (PIP(2)). High-affinity binding of syntenin to PIP(2)-containing lipid layers requires both PDZ domains of this protein. Competition and mutagenesis experiments reveal that the protein and the PIP(2) binding sites in the PDZ domains overlap. Overlay assays indicate that the two PDZ domains of syntenin cooperate in binding to cognate peptides and PIP(2). Experiments on living cells demonstrate PIP(2)-dependent and peptide-dependent modes of plasma membrane association of the PDZ domains of syntenin. These observations suggest that local changes in phosphoinositide concentration control the association of PDZ proteins with their target receptors at the plasma membrane.  相似文献   
46.
Infection by the bacterium Listeria monocytogenes depends on host cell clathrin. To determine whether this requirement is widespread, we analyzed infection models using diverse bacteria. We demonstrated that bacteria that enter cells following binding to cellular receptors (termed "zippering" bacteria) invade in a clathrin-dependent manner. In contrast, bacteria that inject effector proteins into host cells in order to gain entry (termed "triggering" bacteria) invade in a clathrin-independent manner. Strikingly, enteropathogenic Escherichia coli (EPEC) required clathrin to form actin-rich pedestals in host cells beneath adhering bacteria, even though this pathogen remains extracellular. Furthermore, clathrin accumulation preceded the actin rearrangements necessary for Listeria entry. These data provide evidence for a clathrin-based entry pathway allowing internalization of large objects (bacteria and ligand-coated beads) and used by "zippering" bacteria as part of a general mechanism to invade host mammalian cells. We also revealed a nonendocytic role for clathrin required for extracellular EPEC infections.  相似文献   
47.
Accumulation of amyloid β (Aβ) oligomers in the brain is toxic to synapses and may play an important role in memory loss in Alzheimer disease. However, how these toxins are built up in the brain is not understood. In this study we investigate whether impairments of insulin and insulin-like growth factor-1 (IGF-1) receptors play a role in aggregation of Aβ. Using primary neuronal culture and immortal cell line models, we show that expression of normal insulin or IGF-1 receptors confers cells with abilities to reduce exogenously applied Aβ oligomers (also known as ADDLs) to monomers. In contrast, transfection of malfunctioning human insulin receptor mutants, identified originally from patient with insulin resistance syndrome, or inhibition of insulin and IGF-1 receptors via pharmacological reagents increases ADDL levels by exacerbating their aggregation. In healthy cells, activation of insulin and IGF-1 receptor reduces the extracellular ADDLs applied to cells via seemingly the insulin-degrading enzyme activity. Although insulin triggers ADDL internalization, IGF-1 appears to keep ADDLs on the cell surface. Nevertheless, both insulin and IGF-1 reduce ADDL binding, protect synapses from ADDL synaptotoxic effects, and prevent the ADDL-induced surface insulin receptor loss. Our results suggest that dysfunctions of brain insulin and IGF-1 receptors contribute to Aβ aggregation and subsequent synaptic loss.Abnormal protein misfolding and aggregation are common features in neurodegenerative diseases such as Alzheimer (AD),2 Parkinson, Huntington, and prion diseases (13). In the AD brain, intracellular accumulation of hyperphosphorylated Tau aggregates and extracellular amyloid deposits comprise the two major pathological hallmarks of the disease (1, 4). Aβ aggregation has been shown to initiate from Aβ1–42, a peptide normally cleaved from the amyloid precursor protein (APP) via activities of α- and γ-secretases (5, 6). A large body of evidence in the past decade has indicated that accumulated soluble oligomers of Aβ1–42, likely the earliest or intermediate forms of Aβ deposition, are potently toxic to neurons. The toxic effects of Aβ oligomers include synaptic structural deterioration (7, 8) and functional deficits such as inhibition of synaptic transmission (9) and synaptic plasticity (1013), as well as memory loss (11, 14, 15). Accumulation of high levels of these oligomers may also trigger inflammatory processes and oxidative stress in the brain probably due to activation of astrocytes and microglia (16, 17). Thus, to understand how a physiologically produced peptide becomes a misfolded toxin has been one of the key issues in uncovering the molecular pathogenesis of the disease.Aβ accumulation and aggregation could derive from overproduction or impaired clearance. Mutations of APP or presenilins 1 and 2, for example, are shown to cause overproduction of Aβ1–42 and amyloid deposits in the brain of early onset AD (18, 19). Because early onset AD accounts for less than 5% of entire AD population, APP and presenilin mutations cannot represent a universal mechanism for accumulation/aggregation of Aβ in the majority of AD cases. With respect to clearance, Aβ is normally removed by both global and local mechanisms, with the former requiring vascular transport across the blood-brain barrier (20, 21) and the latter via local enzymatic digestions by several metalloproteases, including neprilysin, insulin-degrading enzyme (IDE), and endothelin converting enzymes 1 and 2 (2224).The fact that insulin is a common substrate for most of the identified Aβ-degrading enzymes has drawn attention of investigators to roles of insulin signaling in Aβ clearance. Increases in insulin levels frequently seen in insulin resistance may compete for these enzymes and thus contribute to Aβ accumulation. Indeed, insulin signaling has been shown to regulate expression of metalloproteases such as IDE (25, 26), and influence aspects of Aβ metabolism and catabolism (27). In the endothelium of the brain-blood barrier and glial cells, insulin signaling is reported to regulate protein-protein interactions in an uptake cascade involving low density lipoprotein receptor-related protein and its ligands ApoE and α2-macroglobulin, a system known to bind and clear Aβ via endocytosis and/or vascular transport (28, 29). Similarly, circulating IGF-1 has been reported to play a role in Aβ clearance probably via facilitating brain-blood barrier transportation (30, 31).In the brain, insulin signaling plays a role in learning and memory (3234), potentially linking insulin resistance to AD dementia. Recently we and others have shown that Aβ oligomers interact with neuronal insulin receptors to cause impairments of the receptor expression and function (3537). These impairments mimic the Aβ oligomer-induced synaptic long term potentiation inhibition and can be overcome by insulin treatment (35, 38). Consistently, impairments of both IR and IGF-1R have been reported in the AD brain (3941).Based on these results, we ask whether impairment of insulin and IGF-1 signaling contribute to Aβ oligomer build-up in brain cells. To address this question, we set out to test roles of IR and IGF-1R in cellular clearance and transport of Aβ oligomers (ADDLs) applied to primary neuronal cultures and cell lines overexpressing IR and IGF-1R. Our results show that insulin and IGF-1 receptors function to reduce Aβ oligomers to monomers, and prevent Aβ oligomer-induced synaptic toxicity both at the level of synapse composition and structure. By contrast, receptor impairments resulting from “kinase-dead” insulin receptor mutations, a tyrosine kinase inhibitor of the insulin and IGF-1 receptor, or an inhibitory IGF-1 receptor antibody increase ADDL aggregation in the extracellular medium. Our results provide cellular evidence linking insulin and IGF-1 signaling to amyloidogenesis.  相似文献   
48.
The divergence of sequence and expression pattern of duplicated genes provides a means for genetic innovation to occur without sacrificing an essential function. The cpx1 and cpx2 genes of maize are a singular example of duplicated genes that have diverged by deletion and creation of protein targeting information. The cpx genes encode coproporphyrinogen III oxidase ('coprogen oxidase'), which catalyzes a step in the synthesis of chlorophyll and heme. In plants, this enzyme has been found exclusively in the plastids. The cpx1 and cpx2 genes encode almost identical, catalytically active enzymes with distinctive N-terminal peptide sequences. The cpx1 gene encodes the expected plastid transit peptide, but this region is deleted from the cpx2 gene. While the 5' regions of both messenger RNAs are highly similar, the cpx2 gene has an open-reading frame that could encode a new targeting signal. GFP fused with CPX1 localized to the plastids. In contrast, the GFP fusion with CPX2 did not target plastids and appeared to localize to mitochondria. Both cpx genes are expressed ubiquitously but, based on mutant phenotype, they seem to have discrete biological roles. Seedlings homozygous for a null mutation in the cpx1 gene completely lack chlorophyll and develop necrotic lesions in the light. However, the mutant seedlings and callus cultures will grow in tissue culture in the dark, implying that they retain a capacity to produce heme. We discuss models for the evolution of the cpx genes and possible roles of mitochondrion-localized coprogen oxidase activity in maize.  相似文献   
49.
50.
The most widely studied pathway underlying agonist-promoted internalization of G protein-coupled receptors (GPCRs) involves beta-arrestin and clathrin-coated pits. However, both beta-arrestin- and clathrin-independent processes have also been reported. Classically, the endocytic routes are characterized using pharmacological inhibitors and various dominant negative mutants, resulting sometimes in conflicting results and interpretational difficulties. Here, taking advantage of the fact that beta-arrestin binding to the beta2 subunit of the clathrin adaptor AP-2 (beta2-adaptin) is needed for the beta-arrestin-mediated targeting of GPCRs to clathrin-coated pits, we developed a bioluminescence resonance energy transfer-based approach directly assessing the molecular steps involved in the endocytosis of GPCRs in living cells. For 10 of the 12 receptors tested, including some that were previously suggested to internalize via clathrin-independent pathways, agonist stimulation promoted beta-arrestin 1 and 2 interaction with beta2-adaptin, indicating a beta-arrestin- and clathrin-dependent endocytic process. Detailed analyses of beta-arrestin interactions with both the receptor and beta2-adaptin also allowed us to demonstrate that recruitment of beta-arrestins to the receptor and the ensuing conformational changes are the leading events preceding AP-2 engagement and subsequent clathrin-mediated endocytosis. Among the receptors tested, only the endothelin A and B receptors failed to promote interaction between beta-arrestins and beta2-adaptin. However, both receptors recruited beta-arrestins upon agonist stimulation, suggesting a beta-arrestin-dependent but clathrin-independent route of internalization for these two receptors. In addition to providing a new tool to dissect the molecular events involved in GPCR endocytosis, the bioluminescence resonance energy transfer-based beta-arrestin/beta2-adaptin interaction assay represents a novel biosensor to assess receptor activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号