首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   3篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   8篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2007年   1篇
  2006年   8篇
  2005年   1篇
  2004年   12篇
  2003年   4篇
  2002年   9篇
  2001年   6篇
  2000年   4篇
  1999年   9篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1981年   1篇
排序方式: 共有122条查询结果,搜索用时 328 毫秒
31.
Most of the proteins that are specifically turned over by selective autophagy are recognized by the presence of short Atg8 interacting motifs (AIMs) that facilitate their association with the autophagy apparatus. Such AIMs can be identified by bioinformatics methods based on their defined degenerate consensus F/W/Y-X-X-L/I/V sequences in which X represents any amino acid. Achieving reliability and/or fidelity of the prediction of such AIMs on a genome-wide scale represents a major challenge. Here, we present a bioinformatics approach, high fidelity AIM (hfAIM), which uses additional sequence requirements—the presence of acidic amino acids and the absence of positively charged amino acids in certain positions—to reliably identify AIMs in proteins. We demonstrate that the use of the hfAIM method allows for in silico high fidelity prediction of AIMs in AIM-containing proteins (ACPs) on a genome-wide scale in various organisms. Furthermore, by using hfAIM to identify putative AIMs in the Arabidopsis proteome, we illustrate a potential contribution of selective autophagy to various biological processes. More specifically, we identified 9 peroxisomal PEX proteins that contain hfAIM motifs, among which AtPEX1, AtPEX6 and AtPEX10 possess evolutionary-conserved AIMs. Bimolecular fluorescence complementation (BiFC) results verified that AtPEX6 and AtPEX10 indeed interact with Atg8 in planta. In addition, we show that mutations occurring within or nearby hfAIMs in PEX1, PEX6 and PEX10 caused defects in the growth and development of various organisms. Taken together, the above results suggest that the hfAIM tool can be used to effectively perform genome-wide in silico screens of proteins that are potentially regulated by selective autophagy. The hfAIM system is a web tool that can be accessed at link: http://bioinformatics.psb.ugent.be/hfAIM/.  相似文献   
32.
Amylase activity increased in attached cotyledons of peas, Pisumsativum L. var. Bördi, only during imbibition and remainedalmost constant up to 96 h after germination, but in excisedcotyledons the activity increased slightly at first then markedly.In contrast, the content of the reducing sugars was higher inattached cotyledons than in excised ones. A similar inverserelationship has been found between the concentration of reducingsugars in axes (both attached and excised) and amylase activity. The leakage from intact seeds contained more reducing sugarsthan the leakage from excised cotyledons, whereas the amountof proteins released from the cotyledons was four times greaterduring imbibition. This increase in amylase activity in excisedcotyledons is not thought to be the result of axis excision,but to be the result of the leakage of sugars from the cotyledonsduring incubation. These results suggest that the concentration of reducing sugarsmay be a factor that regulates amylase activity in vivo in boththe cotyledons and axis during the germination of pea seeds. (Received August 4, 1982; Accepted December 14, 1982)  相似文献   
33.
The influence of blue, red and white light and gibberellic acid (GA3) on gibberellin-like activity in tissue extracts of leaves, stems and roots was investigated during growth of pea seedlings (Pisum salivum L. cv. Bördi). Higher GA-like activity was found in leaves and stems of pea plants that were growing in blue light than in those under red or white light. Patterns of change of activity were different in leaves, stems and roots, and in GA3-treated plants.  相似文献   
34.
Endogenous gibberellin-like activity was determined in dry pea seeds (Pisum sativum cv. Bördi), in cotyledons and axes of germinating pea seeds and also in excised cotyledons and axes. During the first two days of pea seed germination, neither the embryonic axes nor the cotyledons show a mutual influence on gibberellin activity, but this appears after 72–96 h of germination. The gibberellin-like activity m cotyledons and axes of germinating seeds increased during the same period, but it decreased in isolated axes and excised cotyledons.  相似文献   
35.
Calcium-induced phosphorylated intermediates and calmodulin-binding proteins in membrane preparations from th renal cortex were analyzed by SDS-polyacrylamide gel electrophoresis at low pH, protein electroblotting and [125I]calmodulin overlay. Two calcium-induced phosphoproteins were found, with a molecular mass of 135 and 115 kDa, respectively. By comparing different preparations characterized by marker enzymes, it was shown that the 135 kDa phosphoprotein is localized in the basal-lateral fragment of the plasma membrane, whereas the 115 kDa phosphoprotein is more pronounced in preparations containing a high proportion of endoplasmic reticulum. A prominent calmodulin-binding protein comigrated with the 135 kDa phosphoprotein; there was no calmodulin binding to polypeptides in the molecular mass range of the 115 kDa phosphoprotein. Partial proteolysis by trypsin and the effect of 20 μM La2+ on the formation of phosphoproteins before and after trypsinization support the conclusion that the 135 kDa protein can be identified with the plasma membrane calcium pump, whereas the 115 kDa phosphoprotein is the phosphorylated intermediate of a different type of calcium pump probably originating from the endoplasmic reticulum. Calmodulin binding in renal membrane preparations analyzed on Laemmli-type slab gels revealed that there are many calmodulin-binding proteins in our preparations. We have identified one band with the renal calcium pump localized in the basal-lateral membrane. Another calmodulin-binding protein migrating at 108 kDa, is not localized in the basal-lateral membrane and could be one of the calmodulin-binding proteins originating from the cytoskeleton.  相似文献   
36.
Ca(2+) release via intracellular release channels, IP(3)Rs (inositol 1,4,5-trisphosphate receptors) and RyRs (ryanodine receptors), is perhaps the most ubiquitous and versatile cellular signalling mechanism, and is involved in a vast number of cellular processes. In addition to this classical release pathway there is limited, but yet persistent, information about less well-defined Ca(2+)-leak pathways that may play an important role in the control of the Ca(2+) load of the endo(sarco)plasmic reticulum. The mechanisms responsible for this 'basal' leak are not known, but recent data suggest that both IP(3)Rs and RyRs may also operate as Ca(2+)-leak channels, particularly in pathological conditions. Proteolytic cleavage or biochemical modification (such as hyperphosphorylation or nitrosylation), for example, occurring during conditions of cell stress or apoptosis, can functionally uncouple the cytoplasmic control domains from the channel domain of the receptor. Highly significant information has been obtained from studies of malfunctioning channels in various disorders; for example, RyRs in cardiac malfunction or genetic muscle diseases and IP(3)Rs in neurodegenerative diseases. In this review we aim to summarize the existing information about functionally uncoupled IP(3)R and RyR channels, and to discuss the concept that those channels can participate in Ca(2+)-leak pathways.  相似文献   
37.
Autosomal dominant polycystic kidney disease is characterized by the loss-of-function of a signaling complex involving polycystin-1 and polycystin-2 (TRPP2, an ion channel of the TRP superfamily), resulting in a disturbance in intracellular Ca2+ signaling. Here, we identified the molecular determinants of the interaction between TRPP2 and the inositol 1,4,5-trisphosphate receptor (IP3R), an intracellular Ca2+ channel in the endoplasmic reticulum. Glutathione S-transferase pulldown experiments combined with mutational analysis led to the identification of an acidic cluster in the C-terminal cytoplasmic tail of TRPP2 and a cluster of positively charged residues in the N-terminal ligand-binding domain of the IP3R as directly responsible for the interaction. To investigate the functional relevance of TRPP2 in the endoplasmic reticulum, we re-introduced the protein in TRPP2−/− mouse renal epithelial cells using an adenoviral expression system. The presence of TRPP2 resulted in an increased agonist-induced intracellular Ca2+ release in intact cells and IP3-induced Ca2+ release in permeabilized cells. Using pathological mutants of TRPP2, R740X and D509V, and competing peptides, we demonstrated that TRPP2 amplified the Ca2+ signal by a local Ca2+-induced Ca2+-release mechanism, which only occurred in the presence of the TRPP2-IP3R interaction, and not via altered IP3R channel activity. Moreover, our results indicate that this interaction was instrumental in the formation of Ca2+ microdomains necessary for initiating Ca2+-induced Ca2+ release. The data strongly suggest that defects in this mechanism may account for the altered Ca2+ signaling associated with pathological TRPP2 mutations and therefore contribute to the development of autosomal dominant polycystic kidney disease.  相似文献   
38.
SPCA1 pumps and Hailey-Hailey disease   总被引:1,自引:0,他引:1  
Both the endoplasmic reticulum and the Golgi apparatus are agonist-sensitive intracellular Ca2+ stores. The Golgi apparatus has Ca2+-release channels and a Ca2+-uptake mechanism consisting of sarco(endo)plasmic-reticulum Ca2+-ATPases (SERCA) and secretory-pathway Ca2+-ATPases (SPCA). SPCA1 has been shown to transport both Ca2+ and Mn2+ in the Golgi lumen and therefore plays an important role in the cytosolic and intra-Golgi Ca2+ and Mn2+ homeostasis. Human genetic studies have provided new information on the physiological role of SPCA1. Loss of one functional copy of the SPCA1 (ATP2C1) gene causes Hailey-Hailey disease, a skin disorder arising in the adult age with recurrent vesicles and erosions in the flexural areas. Here, we review recent experimental evidence showing that the Golgi apparatus plays a much more important role in intracellular ion homeostasis than previously anticipated.  相似文献   
39.
Mutations in the ubiquitously expressed secretory-pathway Ca(2+)-ATPase (SPCA1) Ca(2+) pump result in Hailey-Hailey disease, which almost exclusively affects the epidermal part of the skin. We have studied Ca(2+) signaling in human keratinocytes by measuring the free Ca(2+) concentration in the cytoplasm and in the lumen of both the Golgi apparatus and the endoplasmic reticulum. These signals were compared with those recorded in SPCA1-overexpressing and control COS-1 cells. Both the sarco(endo)plasmic-reticulum Ca(2+)-ATPase (SERCA) and SPCA1 can mediate Ca(2+) uptake into the Golgi stacks. Our results indicate that keratinocytes mainly used the SPCA1 Ca(2+) pump to load the Golgi complex with Ca(2+) whereas the SERCA Ca(2+) pump was mainly used in control COS-1 cells. Cytosolic Ca(2+) signals in keratinocytes induced by extracellular ATP or capacitative Ca(2+) entry were characterized by an unusually long latency reflecting extra Ca(2+) buffering by an SPCA1-containing Ca(2+) store, similarly as in SPCA1-overexpressing COS-1 cells. Removal of extracellular Ca(2+) elicited spontaneous cytosolic Ca(2+) transients in keratinocytes, similarly as in SPCA1-overexpressing COS-1 cells. With respect to Ca(2+) signaling keratinocytes and SPCA1-overexpressing COS-1 cells therefore behaved similarly but differed from control COS-1 cells. The relatively large contribution of the SPCA1 pumps for loading the Golgi stores with Ca(2+) in keratinocytes may, at least partially, explain why mutations in the SPCA1 gene preferentially affect the skin in Hailey-Hailey patients.  相似文献   
40.
A sperm-induced intracellular Ca2+ signal ([Ca2+]i) underlies the initiation of embryo development in most species studied to date. The inositol 1,4,5 trisphosphate receptor type 1 (IP3R1) in mammals, or its homologue in other species, is thought to mediate the majority of this Ca2+ release. IP3R1-mediated Ca2+ release is regulated during oocyte maturation such that it reaches maximal effectiveness at the time of fertilization, which, in mammalian eggs, occurs at the metaphase stage of the second meiosis (MII). Consistent with this, the [Ca2+]i oscillations associated with fertilization in these species occur most prominently during the MII stage. In this study, we have examined the molecular underpinnings of IP3R1 function in eggs. Using mouse and Xenopus eggs, we show that IP3R1 is phosphorylated during both maturation and the first cell cycle at a MPM2-detectable epitope(s), which is known to be a target of kinases controlling the cell cycle. In vitro phosphorylation studies reveal that MAPK/ERK2, one of the M-phase kinases, phosphorylates IP3R1 at at least one highly conserved site, and that its mutation abrogates IP3R1 phosphorylation in this domain. Our studies also found that activation of the MAPK/ERK pathway is required for the IP3R1 MPM2 reactivity observed in mouse eggs, and that eggs deprived of the MAPK/ERK pathway during maturation fail to mount normal [Ca2+]i oscillations in response to agonists and show compromised IP3R1 function. These findings identify IP3R1 phosphorylation by M-phase kinases as a regulatory mechanism of IP3R1 function in eggs that serves to optimize [Ca2+]i release at fertilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号