Over the last decade, communication industries have witnessed a tremendous expansion, while, the biological effects of electromagnetic waves have not been fully elucidated. Current study aimed at evaluating the mutagenic effect of long-term exposure to 900-MHz radiation on alpha-Int1 gene sequences of Candida albicans. A standard 900 MHz radiation generator was used for radiation. 10 ml volumes from a stock suspension of C. albicans were transferred into 10 polystyrene tubes. Five tubes were exposed at 4 °C to a fixed magnitude of radiation with different time periods of 10, 70, 210, 350 and 490 h. The other 5 tubes were kept far enough from radiation. The samples underwent genomic DNA extraction. PCR amplification of alpha-Int1 gene sequence was done using one set of primers. PCR products were resolved using agarose gel electrophoresis and the nucleotide sequences were determined. All samples showed a clear electrophoretic band around 441 bp and further sequencing revealed the amplified DNA segments are related to alpha-Int1 gene of the yeast. No mutations in the gene were seen in radiation exposed samples. Long-term exposure of the yeast to mobile phone radiation under the above mentioned conditions had no mutagenic effect on alpha-Int1 gene sequence. 相似文献
Effects of magnetic fields (MFs) on the activities of antioxidant enzymes of suspension-cultured tobacco cells were investigated. Compared with the control cells, exposure of the cells to static MF with the magnitudes of 10 and 30 mT for 5 days, 5 h each day, increased the activity of superoxide dismutase (SOD). In contrast, the activity of the catalase (CAT) and ascorbate peroxidase (APX) was decreased by MF, compared with those of the control cells. Level of lipid peroxidation was also increased by MF. It suggests that MF could deteriorate antioxidant defense system of plant cells. 相似文献
Magnesium (Mg) as a bimetal plays critical roles in biochemical processes, membrane stability, and enzyme activity. Mg transporters (MGTs) are involving in maintaining Mg homeostasis in cells. Although the MGT family members have been identified in different plant species, there is no comprehensive analysis of the other plants' MGT genes. In the current study, 62 and 41 non-redundant putative MGT proteins were recognized into the genome of Camelina sativa, and Triticum turgidum and they were compared based on physicochemical properties, protein structure, expression, and interaction. All identified MGTs were classified into three subgroups, NIPA, CorA, and MRS2/MGT, based on conserved-motifs distribution. The results showed that the secondary structure pattern in NIPA and MRS2 subfamily members in both studied plant species were highly similar. Furthermore, MGTs encompass the conserved structures and the critical sites mainly in the metal ion and Mg2+ binding centers as well as the catalytic sites were observed. The highest numbers of protein channels were predicted in CorA proteins in both C. sativa and T. turgidum with 24 and 17 channel numbers, respectively. The Ser, Pro, Gly, Lys, Tyr, and Arg amino acids were predicted as the binding residues in MGTs channel regions. The expression pattern of identified genes demonstrated that MGT genes have diverse tissue-specific expression and stress response expression patterns. Besides, 147 co-expressed genes with MGTs were clustered into the eight co-expression nodes involved in N-glycan biosynthesis, protein processing in the endoplasmic reticulum, carbon metabolism, biosynthesis of amino acids, and endocytosis. In the present study, all interpretations are based on in silico predictions, which can be used in further studies related to functional genomics of MGT genes.
The effects of a static magnetic field (SMF) and high natural radioactivity (HR) on catalase and MAPK genes in Vicia faba were investigated. Soil samples with high natural radioactivity were collected from Ramsar in north Iran where the annual radiation absorbed dose from background radiation is higher than 20 mSv/year. The specific activity of the radionuclides of 232Th, 236Ra, and 40K was measured using gamma spectrometry. The seeds were planted either in the soil with high natural radioactivity or in the control soils and were then exposed to a SMF of 30 mT for 8 days; 8 h/day. Levels of expression of catalase and MAPK genes, catalase activity and H2O2 content were evaluated. The results demonstrated significant differences in the expression of catalase and MAPK genes in SMF- and HR-treated plants compared to the controls. An increase in catalase activity was accompanied by increased expression of its gene and accumulation of H2O2. Relative expression of the MAPK gene in treated plants, however, was lower than those of the controls. The results suggest that the response of V. faba plants to SMF and HR may be mediated by modification of catalase and MAPK. 相似文献
Glycinebetaine is one of the most competitive compounds which play an important role in salt stress in plants. In this study, the enhanced salt tolerance in soybean (Glycine max L.) by exogenous application of glycinebetaine was evaluated. To improve salt tolerance at the seedling stage, GB was applied in four different concentrations (0, 5, 25 and 50 mM) as a pre-sowing seed treatment. Salinity stress in the form of a final concentration of 150 mM sodium chloride (NaCl) over a 15 day period drastically affected the plants as indicated by increased proline, MDA and Na+ content of soybean plants. In contrast, supplementation with 50 mM GB improved growth of soybean plants under NaCl as evidenced by a decrease in proline, MDA and Na+ content of soybean plants. Further analysis showed that treatments with GB, resulted in increasing of CAT and SOD activity of soybean seedlings in salt stress. We propose that the role of GB in increasing tolerance to salinity stress in soybean may result from either its antioxidant capacity by direct scavenging of H2O2 or its role in activating CAT activity which is mandatory in scavenging H2O2. 相似文献
It has been shown previously that the DNA deoxyribophosphodiesterase (dRpase) activity of Escherichia coli excises 2-deoxyribose 5-phosphate moieties at apurinic/apyrimidinic (AP) sites in DNA following cleavage of the DNA at the AP site by an AP endonuclease such as endonuclease IV of E coli. A second class of enzymes that cleave DNA at AP sites by a beta-elimination mechanism, AP lyases, leave a different sugar-phosphate product remaining at the AP site, which has been identified as the compound trans-4-hydroxy-2-pentenal 5-phosphate. It is shown that dRpase removes this unsaturated sugar-phosphate group following cleavage of a poly(dA-dT) substrate containing AP sites by the action of the AP lyase endonuclease III of E. coli. The Km for the removal of trans-4-hydroxy-2-pentenal 5-phosphate is 0.06 microM; the Km for the removal of 2-deoxyribose 5-phosphate is 0.17 microM. It was verified that the sugar-phosphate product removed by dRpase from the endonuclease III-cleaved substrate was trans-4-hydroxy-2-pentenal 5-phosphate by conversion of the product to the compound cyclopentane-1,2-dione. The dRpase activity is unique in its ability to remove sugar-phosphate products after cleavage by both AP endonucleases and AP lyases. 相似文献
There is a lack of agreement on the distribution of islet amyloid polypeptide (IAPP) in the pancreases of healthy and diabetic subjects. Therefore, a detailed morphometrical and immunohistochemical study was performed to obtain information on the distribution of cells expressing insulin, glucagon, somatostatin, pancreatic polypeptide (PP), and IAPP in the pancreases of non-diabetic (n=4) and diabetic individuals (n=6). In the non-diabetic cases, beta-cells contributed to approximately 64%, alpha-cells to 26%, delta-cells to 8%, PP cells to 0.3%, and IAPP cells to 34% of the islet cell population. The ratio of IAPP/insulin was approximately 1:2. In diabetic cases, beta-cells were decreased by 24%, and IAPP was decreased by 57%. The alpha- and delta-cells were increased by 40% and 58%, respectively. IAPP/insulin ratio was decreased by 41%. Thus, only 50% of the beta-cells in non-diabetics and only 30% in diabetics coexpressed IAPP. In diabetics, more delta-cells coexpressed IAPP than in non-diabetics. The results seem to argue against the notion that the secretion of IAPP is increased in diabetics. It is possible that an increase in somatostatin and glucagon plays a greater role in diabetes than IAPP. 相似文献
ObjectivesTyphoid fever is caused by Salmonella enterica serovar Typhi. OmpC, OmpF and OmpA, the three major outer membrane proteins (OMPs), could serve as vaccine candidates.MethodsThe porins antigenicity was predicted in silico. The OMP genes were amplified, cloned and expressed. Sero-reactivities of the recombinant proteins purified by denaturing method were assayed by ELISA. BALB/c mice were immunized with the recombinant porins followed by bacterial challenge.ResultsBacterial challenge of the animal model brought about antibody triggering efficacy of the antigen in OmpF > OmpC > OmpA order. Experimental findings validated the in silico results. None of the antigens had synergic or antagonistic effects on each other from immune system induction points of view. Despite their high immunogenicity, none of the antigens was protective. However, administration of two or three antigens simultaneously resulted in retardation of lethal effect. Porins, in addition to their specific functions, share common functions. Hence, they can compensate for each other's functions.ConclusionsThe produced antibodies could not eliminate the pathogenicity by blockade of one or some of the antigens. Porin antigens are not suitable vaccine candidates alone or in denatured forms. Native forms of the antigens maybe studied for protective immunogenicity. 相似文献
The plankton flora on the northeastern coast of the Gulf of Persia consists of many diatom species, the coccolithophores Gephyrocapsa oceanica and Coccolithus huxleyi, and the blue-green alga, Trichodesmium thiebautii. These are prevalent throughout the year and always at low concentrations, with an average maximum in January of 14463 cells/liter and minimum in June of 802/liter. Such comparative constancy suggests that the flora has the attribute of stability. The individual species fluctuate in a patternless, uncorrelated manner, so that the flora is characterized by the attribute of unpredictability. The turbidity of the shallow water reduces the light so that light is usually neither limiting nor inhibitory. There is a small amount of nitrate always available and ample phosphate and silicate. Pure culture studies of several species show growth from about 12° to 34°. The water was 34° in August of 1977. The flora's responsiveness to these light, nutrient, and temperature quantities makes possible its recovery to normal after advective disturbance in June 1977.Contribution number 4574 from the Woods Hole Oceanographic Institution.Contribution number 4574 from the Woods Hole Oceanographic Institution. 相似文献