首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   21篇
  279篇
  2024年   2篇
  2023年   1篇
  2022年   8篇
  2021年   12篇
  2020年   5篇
  2019年   19篇
  2018年   8篇
  2017年   7篇
  2016年   8篇
  2015年   10篇
  2014年   11篇
  2013年   19篇
  2012年   21篇
  2011年   21篇
  2010年   17篇
  2009年   9篇
  2008年   13篇
  2007年   14篇
  2006年   10篇
  2005年   11篇
  2004年   3篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   4篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1969年   2篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有279条查询结果,搜索用时 0 毫秒
271.
The BRCA1 protein is known to participate in multiple cellular processes. In these experiments, we resolved four distinct BRCA1-containing complexes. We found BRCA1 associated with the RNA polymerase II holoenzyme (holo-pol), a large mass complex called the fraction 5 complex, the Rad50-Mre11-Nbs1 complex, and a complex that has not been described previously. We observed this new complex after treating cells with hydroxyurea, suggesting that the hydroxyurea-induced complex (HUIC) is involved with the response to DNA replication blockage. After hydroxyurea treatment of cells, BRCA1 content decreased in the holo-pol and the fraction 5 complex, and BRCA1 was redistributed to the HUIC. The HUIC was shown not to contain a number of holo-pol components or the Rad50-Mre11-Nbs1 complex but was associated with the BRCA1-associated RING domain protein BARD1. These data suggest that BRCA1 participates in multiple cellular processes by multiple protein complexes and that the BRCA1 content of these complexes is dynamically altered after DNA replication blockage.  相似文献   
272.
To overcome the lack of selectivity and nonspecific biodistribution of drugs in the body, targeted delivery of chemotherapeutic agents with aptamers is a very effective method. In this strategy, aptamers could be specifically identified and attach to targeted molecules on the cancerous cells and deliver the chemotherapeutic agents to desired tissue with minimal or no damage to the normal cells. In this study, we designed anti-epithelial cell adhesion molecule (EpCAM) RNA aptamer conjugated PEGylated liposomal doxorubicin (ER-lip) to investigate its in vitro and in vivo anticancer abilities. Data showed that EpCAM aptamer was able to enhance cell uptake and cytotoxic effects of Dox in C26 cell line. The biodistribution study indicated that ER-lip enhanced the tumor accumulation of Dox compared to Caelyx. Also, double staining of isolated tumor cells with anti-CD44-PE-cy5 and anti-EpCAM Cy-7 antibodies indicated that tumor cells expressed a high level of EpCAM+ CD44+ cells (p ≤ .001) compared to cultured C26 cell line. in vivo results showed that ER-lip promoted survival and reduced tumor growth rate in animal model compared to Caelyx. In conclusion, these results suggested that the ER-lip could be served as promising formulation for the treatment of cancers with the high expression of EpCAM.  相似文献   
273.

Extensive applications of peroxidase (POX) have raised the global market demand at a considerable rate during the forecast period of 2020–2025. Nonetheless, the large-scale POX preparation still relies on the extraction from agricultural products, while there is an accumulative driving force toward employing biotechnological processes with agricultural hassle free identity. Consequently, a novel heme peroxidase was purified to homogeneity (MW of 40 kD) from the callus culture of basil in darkness on Murashige-Skoog medium supplemented by 2,4-dichlorophenoxyacetic acid (10–6 M) and kinetin (10–5 M). The highest activity of the purified peroxidase (ObPOX) was observed in Tris-base buffer at pH 7.5 and 80 °C. ObPOX showed high stability over pH(s) 5 to 7.5 and temperatures of 15 to 60 °C. ObPOX specific activity was 1245.142 AU mg?1 in the presence of phenol, 4 times higher than that of HRP. ObPOX showed moderate affinity for guaiacol (Km?=?21.5 mM), but obtained an exceptionally high specificity constant (kcat/Km?=?66,743.7 s?1 M?1) for GASA (4-[(4-Hydroxy-3-methoxyphenyl) azo]-benzenesulfonic acid), the introduced substrate for determination of blood sugar. Applying ObPOX instead of HRP in glucose measurements of the real samples improved the regression constant of the correlation diagram between the tests and the lab results from 0.958 to 0.981. Physicochemical properties of ObPOX as well as the growth rate of basil callus (5.04 g L?1 per day) and the yield of ObPOX production (35 mg per 100 g dry biomass per subculture) designates O. basilicum cell culture for large-scale production of a robust peroxidase.

  相似文献   
274.
The effect of PectaSol on Dox (Doxorubicin) cytotoxicity in terms of apoptosis and cell cycle changes in PCa (prostate cancer) cell lines (DU‐145 and LNCaP) has been investigated. Combination of PectaSol and Dox resulted in a viability of 29.4 and 32.6% (P<0.001) in DU‐145 and LNCaP cells. The IC50 values decreased 1.5‐fold and 1.3‐fold in the DU‐145 and LNCaP cells respectively. In the DU‐145 cells, combination of PectaSol and Dox resulted in a reduction in p27 gene and protein expression (P<0.001). In LNCaP cells, this combination increased p53, p27 and Bcl‐2 expression. Treatment with both drugs in DU‐145 cells led to an increase in sub‐G1 arrest (54.6% compared with 12.2% in Dox). In LNCaP cells, combination of the drugs led to an increased in G2/M arrest (61.7% compared with 53.6% in Dox). Based on these findings, progressive cytotoxicity effect of Dox and PectaSol together rapidly induce cell death in DU‐145 through apoptosis and in LNCaP cells through cell cycle arrest (G2/M arrest).  相似文献   
275.
Several techniques have been devised for the dissociation of tissues for primary culture. These techniques can affect the quantity and quality of the isolated cells. The aim of our study was to develop the most appropriate method for the isolation of human umbilical cord-derived mesenchymal (hUCM) cells. In the present study, we compared four methods for the isolation of hUCM cells: three enzymatic methods; collagenase/hyaluronidase/trypsin (CHT), collagenase/trypsin (CT) and trypsin (Trp), and an explant culture (Exp) method. The trypan blue dye exclusion test, the water-soluble tetrazolium salt-1 (WST-1) assay, flow cytometry, alkaline phosphatase activity and histochemical staining were used to evaluate the results of the different methods. The hUCM cells were successfully isolated by all methods but the isolation method used profoundly altered the cell number and proliferation capacity of the isolated cells. The cells were successfully differentiated into adipogenic and osteogenic lineages and alkaline phosphatase activity was detected in the hUCM cell colonies of all groups. Flow cytometry analysis revealed that CD44, CD73, CD90 and CD105 were expressed in all groups, while CD34 and CD45 were not expressed. The expression of C-kit in the enzymatic groups was higher than in the explant group, while the expression of Oct-4 was higher in the CT group compared to the other groups. We concluded that the collagenase/trypsin method of cell isolation yields a higher cell density than the others. These cells expressed a higher rate of pluripotent cell markers such as C-kit and Oct-4, while the explant method of cell isolation resulted in a higher cell proliferation rate and activity compared to the other methods.  相似文献   
276.

Introduction

Compounds exhibiting low non-specific intracellular binding or non-stickiness are concomitant with rapid clearing and in high demand for live-cell imaging assays because they allow for intracellular receptor localization with a high signal/noise ratio. The non-stickiness property is particularly important for imaging intracellular receptors due to the equilibria involved.

Method

Three mammalian cell lines with diverse genetic backgrounds were used to screen a combinatorial fluorescence library via high throughput live cell microscopy for potential ligands with high in- and out-flux properties. The binding properties of ligands identified from the first screen were subsequently validated on plant root hair. A correlative analysis was then performed between each ligand and its corresponding physiochemical and structural properties.

Results

The non-stickiness property of each ligand was quantified as a function of the temporal uptake and retention on a cell-by-cell basis. Our data shows that (i) mammalian systems can serve as a pre-screening tool for complex plant species that are not amenable to high-throughput imaging; (ii) retention and spatial localization of chemical compounds vary within and between each cell line; and (iii) the structural similarities of compounds can infer their non-specific binding properties.

Conclusion

We have validated a protocol for identifying chemical compounds with non-specific binding properties that is testable across diverse species. Further analysis reveals an overlap between the non-stickiness property and the structural similarity of compounds. The net result is a more robust screening assay for identifying desirable ligands that can be used to monitor intracellular localization. Several new applications of the screening protocol and results are also presented.  相似文献   
277.
Neurochemical Research - Alzheimer’s disease (AD) is associated with neural oxidative stress and inflammation, and it is assumed to affect more women than men with unknown mechanisms....  相似文献   
278.
In a two-hybrid screen for proteins that interact with human PCNA, we identified and cloned a human protein (hCdc18) homologous to yeast CDC6/Cdc18 and human Orc1. Unlike yeast, in which the rapid and total destruction of CDC6/Cdc18 protein in S phase is a central feature of DNA replication, the total level of the human protein is unchanged throughout the cell cycle. Epitope-tagged protein is nuclear in G1 and cytoplasmic in S-phase cells, suggesting that DNA replication may be regulated by either the translocation of this protein between the nucleus and the cytoplasm or the selective degradation of the protein in the nucleus. Mutation of the only nuclear localization signal of this protein does not alter its nuclear localization, implying that the protein is translocated to the nucleus through its association with other nuclear proteins. Rapid elimination of the nuclear pool of this protein after the onset of DNA replication and its association with human Orc1 protein and cyclin-cdks supports its identification as human CDC6/Cdc18 protein.  相似文献   
279.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号