首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   11篇
  2022年   3篇
  2021年   7篇
  2020年   2篇
  2019年   3篇
  2018年   10篇
  2017年   9篇
  2016年   6篇
  2015年   8篇
  2014年   7篇
  2013年   10篇
  2012年   7篇
  2011年   6篇
  2010年   3篇
  2009年   1篇
  2008年   5篇
  2007年   9篇
  2006年   5篇
  2005年   6篇
  2004年   8篇
  2003年   9篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
  1987年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1974年   4篇
  1973年   3篇
  1972年   1篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有172条查询结果,搜索用时 250 毫秒
61.
Genes for β-glucosidase (Bgl) isolated from a genomic library of the cellulolytic bacterium,Cellulomonas biazotea, were cloned in pUC18 in itsSacI cloning site and transformed toE. coli. Ten putative recombinants showed blackening zones on esculin plates, yellow zones on pNPG plates, in liquid culture and on native polyacrylamide gel electrophoresis activity gels. They fell into three distinct groups. Three representativeE. coli clones carried recombinant plasmids designated pRM54, pRM1 and pRM17. The genes were located on 5.6-, 3.7- and 1.84-kb fragments, respectively. Their location was obtained by deletion analysis which revealed that 5.5, 3.2, and 1.8 kb fragments were essential to code for BglA, BglB, and BglC, respectively, and conferred intracellular production of β-glucosidase onE. coli. Expression of thebgl genes resulted in overproduction of β-glucosidase in the three clones. Secretion occurred into the periplasmic fractions. Three inserts carryingbgl genes from the representative recombinantE. coli were isolated withSacI ligated in the shuttle vector pYES2.0 in itsSacI site and transformed toE. coli andS. cerevisiae. The recombinant plasmids were redesignated pRPG1, pRPG2 and pRPG3 coding for BglA1, BglB1 and BglC1. The cloned genes conferred extracellular production of β-glucosidase onS. cerevisiae and enabled it to grow on cellobiose and salicin. Thegall promoter of shuttle vector pYES2.0 enabled the organisms to produce twice more β-glucosidase than that supported by thelacZ-promoter of pUC18 plasmid inE. coli. The cloned gene can be used as a selection marker for introducing recombinant plasmids in wild strains ofS. cerevisiae The enzyme produced bybgl + yeast andE. coli recombinants resembles that of the donor with respect to temperature and pH requirement for maximum activity. Other enzyme properties of the β-glucosidases fromS. cerevisiae were substantially the same as those fromC. biazotea.  相似文献   
62.
63.
The angiotensin converting enzyme gene (ACE) is a candidate gene for an individual's genetic susceptibility to left ventricular hypertrophy (LVH). LVH has long been thought to be an end point of essential hypertension (EH), rather than a separate entity, though it is influenced by a unique set of hormonal, vascular and genetic factors. In this study, we attempted to determine whether two representative polymorphisms of the ACE gene, ACE I/D and 2350 G>A, known to be associated with EH and to influence plasma ACE levels most significantly, could implicate ACE as a quantitative trait locus (QTL) for LVH. We carried out a retrospective, case-control study of the two ACE polymorphisms amongst 180 nationals (50 LVH patients and 130 controls) from the United Arab Emirates--an ethnic group characterized by no alcohol intake and no cigarette smoking--for correlations with LVH. Clinical diagnosis of LVH was based on echocardiographic and ECG criteria. ACE I/D and 2350 G>A genotypes were determined by PCR and restriction digestion. Univariate and multivariate logistic regression analyses revealed an association between ACE polymorphisms and LVH. Haplotype analysis further supported this finding. ACE I/D and ACE 2350 G>A polymorphisms are in strong linkage disequilibrium and are associated with LVH, suggesting that ACE is likely to be a QTL for LVH.  相似文献   
64.
We investigated whether or not lettuce growth was inhibited by diffused L-3-(3,4-dihydroxyphenyl)alanine (L-DOPA), an allelochemical exuded from the roots of velvetbean (Mucuna pruriens (L.) DC. var. utilis) cultivars using a modified plant-box bioassay. For all the cultivars and one accession examined L-DOPA diffused from the roots and caused radicle and hypocotyl growth inhibition. A high correlation co-efficient (r = 0.838 to 0.982) was observed between L-DOPA concentration and lettuce seed sowing distance. L-DOPA diffused equally in all directions from roots at 0 mm position (close to root surface) in the plant-box, while the inhibition (%) of lettuce radicle growth gradually decreased with distance from the roots. For all cultivars the concentration of L-DOPA was significantly different at 0 mm position: being highest in cv. preta (167 g/ml) and lowest in cv. jaspeada and cv. ana (13 g/ml). The correlation between lettuce radicle growth inhibition and concentration of diffused L-DOPA was high (r = 0.856 to 0.966) in all cultivars and accession examined. However, the concentration of diffused L-DOPA did not correlate with the fresh weight concentration of L-DOPA measured in roots. The lettuce radicle growth inhibition from mucuna diffused L-DOPA was very similar that induced by synthetic L-DOPA, suggesting that diffused L-DOPA was the allelochemical responsible for growth inhibition.  相似文献   
65.
The aim of this study was to investigate the seed germination response of different plant families to L-3,4-dihydroxyphenylalanine (L-DOPA), one of the strongest allelochemicals in nature. Three types of responses in terms of colouration changes on filter paper were obtained; black and gray (Gramineae and Compositae), no change (Leguminosae, Brassicaceae, and Cucurbitaceae) and an obstructed-circle around the seeds with black colouration on the outer side of the circle (Hydrophyllaceae) when L-DOPA solution was applied during seed germination. Radicle growth in the Gramineae and Leguminosae families was inhibited less by a single treatment of L-DOPA solution (250 g/ml) than in the other families. However, continuous treatment with L-DOPA demonstrated that the Gramineae family was less affected in terms of the inhibition of radicle growth than the Leguminosae family. When more seeds were added to the L-DOPA solution less inhibition of radicle growth was observed in all plants tested. The EC50 of L-DOPA for bluebell (Hydrophyllaceae), white clover (Leguminosae), and lettuce (Compositae) was approximately 200, 100, and 50 g/ml, respectively. However, in perennial ryegrass (Gramineae) no EC50 was observed even at 250 g/ml L-DOPA. In the Gramineae family, addition of more seeds into the L-DOPA solution increased the colouration on the filter paper. These results demonstrated that each seed functions to oxidize or dissolve L-DOPA. In the Gramineae, Leguminosae, Compositae, and Hydrophyllaceae, increasing the number of seeds imbibed in the L-DOPA solution increased the rate of L-DOPA disappearance from the petri-dish. Of the Grammaceous plants tested, only perennial ryegrass, which showed fairly weak allelopathic activity, metabolised L-DOPA to dopamine. Although the relationships between the changes in colouration of the filter paper and the inhibition of radicle growth in these experiments are still unknown, there appears to be a strong response in each species to protect the cell from L-DOPA damage.  相似文献   
66.
Implantable medical devices (IMDs) have experienced a rapid progress in recent years to the advancement of state‐of‐the‐art medical practices. However, the majority of this equipment requires external power sources like batteries to operate, which may restrict their application for in vivo situations. Furthermore, these external batteries of the IMDs need to be changed at times by surgical processes once expired, causing bodily and psychological annoyance to patients and rising healthcare financial burdens. Currently, harvesting biomechanical energy in vivo is considered as one of the most crucial energy‐based technologies to ensure sustainable operation of implanted medical devices. This review aims to highlight recent improvements in implantable triboelectric nanogenerators (iTENG) and implantable piezoelectric nanogenerators (iPENG) to drive self‐powered, wireless healthcare systems. Furthermore, their potential applications in cardiac monitoring, pacemaker energizing, nerve‐cell stimulating, orthodontic treatment and real‐time biomedical monitoring by scavenging the biomechanical power within the human body, such as heart beating, blood flowing, breathing, muscle stretching and continuous vibration of the lung are summarized and presented. Finally, a few crucial problems which significantly affect the output performance of iTENGs and iPENGs under in vivo environments are addressed.  相似文献   
67.
Epidermal growth factor receptor-dependent mechanisms have been implicated in growth signal transduction pathways that contribute to cancer development, including dermal carcinogenesis. Detection of the extracellular domain of the epidermal growth factor receptor (EGFR ECD) in serum has been suggested as a potential biomarker for monitoring this effect in vivo. Arsenic is a known human carcinogen, producing skin and other malignancies in populations exposed through their drinking water. One such exposed population, which we have been studying for a number of years, is in Bangladesh. The purpose of this study was to examine the EGFR ECD as a potential biomarker of arsenic exposure and/or effect in this population. Levels of the EGFR ECD were determined by enzyme-linked immunosorbent assay in the serum samples from 574 individuals with a range of arsenic exposures from drinking water in the Araihazar area of Bangladesh. In multiple regression analysis, serum EGFR ECD was found to be positively associated with three different measures of arsenic exposure (well water arsenic, urinary arsenic and a cumulative arsenic index) at statistically significant levels (p≤0.034), and this association was strongest among the individuals with arsenic-induced skin lesions (p ≤ 0.002). When the study subjects were stratified in tertiles of serum EGFR ECD levels, the risk of skin lesions increased progressively for each increase in all three arsenic measures (also stratified in tertiles) and this increasing risk became more pronounced among subjects within the highest tertile of EGFR ECD levels. These results suggest that serum EGFR ECD levels may be a potential biomarker of effect of arsenic exposure and may indicate those exposed individuals at greatest risk for the development of arsenic-induced skin lesions.  相似文献   
68.
1. A convenient synthesis of 3-hydroxytrisnorlanost-8-en-24-al and its conversion into [24-(3)H]lanosterol and [26,27-(14)C(2)]lanosterol is described. 2. A method for the efficient incorporation of lanosterol into ergosterol by the whole cells of Saccharomyces cerevisiae is also described. 3. It is shown that in the biosynthesis of ergosterol from doubly labelled lanosterol the C-24 hydrogen atom of lanosterol is retained in ergosterol. 4. On the basis of unambiguous degradations it is shown that the C-alkylation step in ergosterol biosynthesis is accompanied by the migration of a hydrogen atom from C-24 to C-25. 5. The mechanism for the biosynthesis of the ergosterol side chain is presented. 6. Mechanisms of other C-alkylation reactions are also discussed.  相似文献   
69.
The fungal cultures, namely – Pleurotus sajor-caju MTCC 1806, Saccharomyces cerevisiae MTCC 6933 and Candida tropicalis MTCC 1406 and their combinations, C. tropicalis + S. cerevisiae, P. sajor-caju + S. cerevisiae and C. tropicalis + P. sajor-caju were grown in minimal medium containing 100 ppm of gossypol as the sole carbon and energy source. The culture supernatants of C. tropicalis + S. cerevisiae and P. sajor-caju + S. cerevisiae had low residual gossypol levels of 29 and 25 ppm, respectively. In the present study, we attempted to isolate gossypol-degrading enzyme and biodegraded gossypol from the culture supernatants of C. tropicalis + S. cerevisiae and P. sajor-caju + S. cerevisiae. The specific activity of laccase in the purified enzyme extracts of the C. tropicalis + S. cerevisiae and P. sajor-caju + S. cerevisiae treated samples was 425 and 224 U/mg, respectively. In SDS-PAGE, the gossypol-degrading enzyme was revealed as 3 bands of molecular weights ranging from 45 to 66 kDa. The characterization of biodegraded gossypol by FTIR analysis showed a reduction in aldehydes (C-H) stretches in samples treated with fungi. Mass spectrometry analysis revealed that the monoisotopic mass of the biodegraded gossypol was 474 g/mol.  相似文献   
70.
Alpha1-acid glycoprotein (AAG) is a major acute phase protein of human plasma. Binding of clofazimine to AAG is investigated using optical spectroscopy and molecular docking tools. We found significant quenching of intrinsic fluorescence of AAG upon the binding of clofazimine, binding mode is static with binding constant of 3.52 × 104at 298 K. The Gibbs free energy change is found to be negative for the interaction of clofazimine with AAG indicating spontaneity of the binding process. Binding of clofazimine induced ordered structure in protein and lead to molecular compaction. Molecular docking results indicate the binding site is located in the central beta barrel, hydrogen bonding and hydrophobic interactions are main bonding forces between AAG–clofazimine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号