首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2944篇
  免费   159篇
  国内免费   1篇
  3104篇
  2023年   16篇
  2022年   42篇
  2021年   78篇
  2020年   49篇
  2019年   49篇
  2018年   71篇
  2017年   68篇
  2016年   79篇
  2015年   85篇
  2014年   130篇
  2013年   170篇
  2012年   220篇
  2011年   181篇
  2010年   119篇
  2009年   117篇
  2008年   145篇
  2007年   146篇
  2006年   112篇
  2005年   108篇
  2004年   97篇
  2003年   81篇
  2002年   88篇
  2001年   75篇
  2000年   76篇
  1999年   54篇
  1998年   20篇
  1997年   16篇
  1996年   33篇
  1995年   18篇
  1994年   18篇
  1993年   19篇
  1992年   48篇
  1991年   37篇
  1990年   26篇
  1989年   33篇
  1988年   25篇
  1987年   29篇
  1986年   20篇
  1985年   31篇
  1984年   25篇
  1982年   14篇
  1981年   17篇
  1980年   24篇
  1979年   27篇
  1978年   27篇
  1977年   17篇
  1975年   12篇
  1974年   13篇
  1973年   17篇
  1972年   13篇
排序方式: 共有3104条查询结果,搜索用时 15 毫秒
101.
Effect of long term cholesterol diet withdrawal on accelerated atherosclerosis in iliac artery of New Zealand White (NZW) rabbits has not been explored so far. Atherosclerosis was thus induced in rabbits by a combination of balloon injury and atherogenic diet (AD) (1% cholesterol and 6% peanut oil) feeding for 8 weeks (baseline) followed by chow diet (CD) feeding for 4, 8, 16, 32, 50 and 64 weeks. The plaque characterization was done using histology, real time RT-PCR and vasoreactivity studies. Significant elevation in plasma lipids with AD feeding was normalized following 16 weeks of CD feeding. However, baseline comparison showed advanced plaque features even after 8 weeks of CD period with significant elevation in intima/media thickness ratio and plaque area later showing reduction at 50 and 64 weeks CD periods. Lesion lipid accumulation and CD68 positivity was maintained till 16 weeks of CD feeding which significantly reduced from 32 to 64 weeks CD periods. Baseline comparison showed significant increase in ground substance, MMP-9 and significant decrease in α-actin and collagen content at 8 weeks CD period indicating features of unstable plaque. These features regressed up to 64 weeks of CD. Partial restoration of functional vasoconstriction and vasorelaxation was seen after 64 weeks of CD feeding. mRNA expression of MCP-1, VCAM-1, collagen type I and III, MMP-9, TIMP-1, IFN-γ, TNF-α, IL-10 and eNOS supported the above findings. The study thus reveals insights into initial plaque instability and subsequent regression on AD withdrawal in this model. These results are suggestive of an appropriate window for drug intervention for plaque stability/regression and restenosis as well as improves understanding of plaque regression phenomenon in this model.  相似文献   
102.
Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.  相似文献   
103.
104.
A role for HflX in 50S-biogenesis was suggested based on its similarity to other GTPases involved in this process. It possesses a G-domain, flanked by uncharacterized N- and C-terminal domains. Intriguingly, Escherichia coli HflX was shown to hydrolyze both GTP and adenosine triphosphate (ATP), and it was unclear whether G-domain alone would explain ATP hydrolysis too. Here, based on structural bioinformatics analysis, we suspected the possible existence of an additional nucleotide-binding domain (ND1) at the N-terminus. Biochemical studies affirm that this domain is capable of hydrolyzing ATP and GTP. Surprisingly, not only ND1 but also the G-domain (ND2) can hydrolyze GTP and ATP too. Further; we recognize that ND1 and ND2 influence each other’s hydrolysis activities via two salt bridges, i.e. E29-R257 and Q28-N207. It appears that the salt bridges are important in clamping the two NTPase domains together; disrupting these unfastens ND1 and ND2 and invokes domain movements. Kinetic studies suggest an important but complex regulation of the hydrolysis activities of ND1 and ND2. Overall, we identify, two separate nucleotide-binding domains possessing both ATP and GTP hydrolysis activities, coupled with an intricate inter-domain regulation for Escherichia coli HflX.  相似文献   
105.
Phosphatidylinositol-3,4,5-triphosphate (PIP3) and phosphatidylinositol-4,5-biphosphate (PIP2) are two well-known membrane bound polyphosphoinositides. Diabetes is associated with impaired glucose metabolism. Using a 3T3L1 adipocyte cell model, this study investigated the role of PIP3 and PIP2 on insulin stimulated glucose metabolism in high glucose (HG) treated cells. Exogenous PIP3 supplementation (1, 5, or 10 nM) increased the phosphorylation of AKT and PKCζ/λ, which in turn upregulated GLUT4 total protein expression as well as its surface expression, glucose uptake, and glucose utilization in cells exposed to HG (25 mM); however, PIP2 had no effect. Comparative signal silencing studies with antisense AKT2 and antisense PKCζ revealed that phosphorylation of PKCζ/λ is more effective in PIP3 mediated GLUT4 activation and glucose utilization than in AKT phosphorylation. Supplementation with PIP3 in combination with insulin enhanced glucose uptake and glucose utilization compared to PIP2 with insulin, or insulin alone, in HG-treated adipocytes. This suggests that a decrease in cellular PIP3 levels may cause impaired insulin sensitivity in diabetes. PIP3 supplementation also prevented HG-induced MCP-1 and resistin secretion and lowered adiponectin levels. This study for the first time demonstrates that PIP3 but not PIP2 plays an important role in GLUT4 upregulation and glucose metabolism mediated by AKT/PKCζ/λ phosphorylation. Whether PIP3 levels in blood can be used as a biomarker of insulin resistance in diabetes needs further investigation.  相似文献   
106.
ABSTRACT

Honey bees have a remarkable sense of time and individual honey bee foragers are capable of adjusting their foraging activity with respect to the time of food availability. Although, there is compelling experimental evidence that foraging behavior is guided by the circadian clock, nothing is known about the underlying molecular mechanisms. Here we present for the first time a study that explores whether time-restricted foraging under natural light-dark (LD) condition affects the molecular clock in honey bees. Food was presented in an enclosed flight chamber (12 m × 4 m × 4 m) either for 2 hours in the morning or 2 hours in the afternoon for several consecutive days and daily cycling of the two major clock genes, cryptochrome2 (cry2) and period (per), were analyzed for three different parts of the nervous system involved in feeding-related behaviors: brain, subesophageal ganglion (SEG), and the antennae with olfactory sensory neurons. We found that morning and afternoon trained foragers showed significant phase differences in the cycling of both clock genes in all three tissues. In addition, the phase differences were more pronounced when the feeder was scented with the common plant odor, linalool. Together our findings suggest that foraging time may function as a Zeitgeber that might have the capability to modulate the light entrained molecular clock.  相似文献   
107.
Lung cancer is one of the most common malignant neoplasms all over the world. Smoking and a number of constituents of tobacco are responsible for development of lung tumours; however, the deleterious effects of tobacco-derived carcinogen, nitrosamine 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosamine ketone (NNK)) remain unmatched. We report the development of a novel rodent model by administering multiple doses of NNK to male Wistar rats and feeding them with high-fat and low-protein diet. Tumour cells in lungs were observed in approximately 98 % rats after 8 months of NNK treatment, as evident by histopathological analysis. This rodent model showed slow progression of lung tumours which has helped us to assess early indicators of oxidative damage in lungs by studying the levels of lipid peroxidation and antioxidant parameters. LPO was elevated by 46.94 %, SOD, CAT, GSH and GR activity was decreased by 48.67 %, 22.04 %, 21.46 % and 20.85 %, respectively in serum of NNK treated rats when compared with control. These findings suggest that increased oxidative stress can represent a risk factor for the development of chronic disease in early future. This new animal model is an attempt to greatly facilitate studies of the pathophysiology, biochemistry and therapy of lung cancer.  相似文献   
108.
Bioleaching is a technology applicable to metal extraction from low-grade ores, ore beneficiation, coal beneficiation, metal detoxification, and recovery of metals from waste materials. The technology is environmentally sound and it may lower operational cost and energy requirement. Whereas leaching of sulfidic minerals using chemolithoautotrophic bacteria is the most studied and commercially exploitable aspect of mineral biotechnology today, there is a dearth of literature on the dissolution of nonsulfidic minerals. Biohydrometallurgy of nonsulfidic minerals involves the action of heterotrophic microorganisms. Heterotrophic bacteria and fungi have the potential for producing acidic metabolites that are able to solubilize oxide, silicate, carbonate and hydroxide minerals by reduction, acidolysis and complexation mechanisms. It is an important aspect of biohydrometallugy that requires development to meet future needs.  相似文献   
109.
Biallelic inactivation of LKB1, a serine/threonine kinase, has been detected in 30% of lung adenocarcinomas, and inhibition of breast tumor growth has been demonstrated. We have identified the tumor suppressor, Nischarin, as a novel binding partner of LKB1. Our mapping analysis shows that the N terminus of Nischarin interacts with amino acids 44–436 of LKB1. Time lapse microscopy and Transwell migration data show that the absence of both Nischarin and LKB1 from an invasive breast cancer cell line (MDA-MB-231) enhances migration as measured by increased distance and speed of migrating cells. Our data suggest that this is a result of elevated PAK1 and LIMK1 phosphorylation. Moreover, the absence of Nischarin and LKB1 increased tumor growth in vivo. Consistent with this, the percentage of S phase cells was increased, as demonstrated by flow cytometry and enhanced cyclin D1. The absence of Nischarin and LKB1 also led to a dramatic increase in the formation of lung metastases. Our studies, for the first time, demonstrate functional interaction between LKB1 and Nischarin to inhibit cell migration and breast tumor progression. Mechanistically, we show that these two proteins together regulate PAK-LIMK-Cofilin and cyclin D1/CDK4 pathways.  相似文献   
110.
AimsThe aim of the present investigation was to develop a nanoemulsion (NE) gel formulation for the transdermal delivery of meloxicam (MLX) in order to ensure maximum controlled and sustained drug release capacity.Main methodsThe MLX containing NE gel was prepared and characterized for particle size, zeta potential, pH, rheology, in vitro drug release, in vitro skin permeation, and in vitro hemolysis. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) of MLX-NE gel treated rat skin was performed to investigate the skin permeation mechanism of meloxicam from NE gel. Skin permeation potential of the developed gel formulation was assessed using confocal laser scanning microscopy (CLSM). The in vivo toxicity of MLX-NE gel was assessed by histopathological examination in rat. The rat paw edema test was performed to evaluate the anti-inflammatory activity of MLX-NE gel.Key findingsPercutaneous absorption studies demonstrated a higher permeation of meloxicam from NE gel, than the drug solution. FTIR and DSC studies supported stratum corneum lipid extraction as a possible penetration enhancer mechanism for MLX-NE gel. CLSM studies confirmed the permeation of the NE gel formulation to the deeper layers of the skin (up to 130 μm). MLX-NE gel turned out to be non-irritant, biocompatible, and provided maximum inhibition of paw edema in rats over 24 h in contrast to MLX solution.SignificanceThe nanoemulsion gel formulation may hold promise as an effective alternative for the transdermal delivery of meloxicam.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号