首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   891篇
  免费   41篇
  国内免费   1篇
  2023年   6篇
  2022年   15篇
  2021年   26篇
  2020年   7篇
  2019年   14篇
  2018年   19篇
  2017年   13篇
  2016年   40篇
  2015年   37篇
  2014年   43篇
  2013年   60篇
  2012年   72篇
  2011年   73篇
  2010年   48篇
  2009年   32篇
  2008年   40篇
  2007年   49篇
  2006年   31篇
  2005年   23篇
  2004年   38篇
  2003年   30篇
  2002年   25篇
  2001年   21篇
  2000年   26篇
  1999年   11篇
  1998年   4篇
  1995年   4篇
  1994年   6篇
  1993年   4篇
  1992年   14篇
  1991年   13篇
  1990年   5篇
  1989年   8篇
  1988年   4篇
  1987年   12篇
  1986年   9篇
  1985年   10篇
  1984年   4篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1974年   4篇
  1971年   2篇
  1969年   2篇
  1967年   2篇
  1966年   2篇
排序方式: 共有933条查询结果,搜索用时 15 毫秒
141.
The molecular mechanisms of pro-apoptotic effects of human-derived Lactobacillus reuteri ATCC PTA 6475 were investigated in this study. L. reuteri secretes factors that potentiate apoptosis in myeloid leukemia-derived cells induced by tumour necrosis factor (TNF), as indicated by intracellular esterase activity, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labelling assays and poly (ADP-ribose) polymerase cleavage. L. reuteri downregulated nuclear factor-κB (NF-κB)-dependent gene products that mediate cell proliferation (Cox-2, cyclin D1) and cell survival (Bcl-2, Bcl-xL). L. reuteri suppressed TNF-induced NF-κB activation, including NF-κB-dependent reporter gene expression in a dose-and time-dependent manner. L. reuteri stabilized degradation of IκBα and inhibited nuclear translocation of p65 (RelA). Although phosphorylation of IκBα was not affected, subsequent polyubiquitination necessary for regulated IκBα degradation was abrogated by L. reuteri . In addition, L. reuteri promoted apoptosis by enhancing mitogen-activated protein kinase (MAPK) activities including c-Jun N-terminal kinase and p38 MAPK. In contrast, L. reuteri suppressed extracellular signal-regulated kinases 1/2 in TNF-activated myeloid cells. L. reuteri may regulate cell proliferation by promoting apoptosis of activated immune cells via inhibition of IκBα ubiquitination and enhancing pro-apoptotic MAPK signalling. An improved understanding of L. reuteri- mediated effects on apoptotic signalling pathways may facilitate development of future probiotics-based regimens for prevention of colorectal cancer and inflammatory bowel disease.  相似文献   
142.
Complexes of the type [M(bssdh)]Cl and [M(dspdh)]Cl, where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); Hbssdh = benzil salicylaldehyde succinic acid dihydrazone, Hdspdh = diacetyl salicylaldehyde phthalic acid dihydrazone have been synthesized and characterized with the help of elemental analyses, electrical conductance, magnetic susceptibility measurements, electronic, ESR and IR spectra and X-ray diffraction studies. Magnetic moment values and electronic spectral transitions indicate a spin free octahedral structure for Co(II), Ni(II) and Cu(II) complexes. IR spectral studies suggest that both the ligands behave as monobasic hexadentate ligands coordinating through three > C = O, two > C = N- and a phenolate group to the metal. ESR spectra of Cu(II) complexes are axial type and suggest d(x(2)-y(2)) as the ground state. X-ray powder diffraction parameters for [Co(bssdh)]Cl and [Co(dspdh)]Cl complexes correspond to an orthorhombic crystal lattice. The ligands as well as their metal complexes show a significant antifungal and antibacterial activity against various fungi and bacteria. The metal complexes are more active than the parent ligands.  相似文献   
143.
144.
Designing strategies for anti‐cancer therapy have posed a significant challenge. One approach has been to inhibit specific DNA repair proteins and their respective pathways to enhance chemotherapy and radiation therapy used to treat cancer patients. Synthetic lethality represents an approach that exploits pre‐existing DNA repair deficiencies in certain tumors to develop inhibitors of DNA repair pathways that compensate for the tumor‐associated repair deficiency. Since helicases play critical roles in the DNA damage response and DNA repair, particularly in actively dividing and replicating cells, it is proposed that the identification and characterization of synthetic lethal relationships of DNA helicases will be of value in developing improved anti‐cancer treatment strategies. In this review, we discuss this hypothesis and current evidence for synthetic lethal interactions of eukaryotic DNA helicases in model systems. J. Cell. Biochem. 106: 758–763, 2009. Published 2009 Wiley‐Liss, Inc.  相似文献   
145.
Variation is the phenomenon where individuals of a population differ from each other. The variation or diversity can have morphological manifestation or genetic basis. Individual identification based on morphological record is the most common practice in Jatropha. Therefore, in order to find a proper method for estimation of genetic diversity and genetic relationships among different germplasm of Jatropha curcas L., random amplified polymorphic DNA (RAPD) technique based on polymerase chain reaction (PCR) was used for described purpose. Out of 55 decamer primers tested, 26 primers produced good amplification products. A total of 6,011 amplification products were scored from which only 1,859 bands (30.92%) were found to be polymorphic and the size of bands ranged from 300 to 2,500 bp. Unweighted pair group method using arithmetic average cluster analysis revealed clear genetic difference among J. curcas germplasm. The scientific data presented in this study suggests that RAPD-PCR could be used as a valuable tool for estimation of genetic diversity and genetic relationship among germplasm of J. curcas L.  相似文献   
146.
147.
IFN-α/β plays a critical role in limiting viral spread, restricting viral tropism and protecting mice from neurotropic coronavirus infection. However, the IFN-α/β dependent mechanisms underlying innate anti-viral functions within the CNS are poorly understood. The role of RNase L in viral encephalomyelitis was explored based on its functions in inhibiting translation, inducing apoptosis, and propagating the IFN-α/β pathway through RNA degradation intermediates. Infection of RNase L deficient (RL−/−) mice with a sub-lethal, demyelinating mouse hepatitis virus variant revealed that the majority of mice succumbed to infection by day 12 p.i. However, RNase L deficiency did not affect overall control of infectious virus, or diminish IFN-α/β expression in the CNS. Furthermore, increased morbidity and mortality could not be attributed to altered proinflammatory signals or composition of cells infiltrating the CNS. The unique phenotype of infected RL−/− mice was rather manifested in earlier onset and increased severity of demyelination and axonal damage in brain stem and spinal cord without evidence for enhanced neuronal infection. Increased tissue damage coincided with sustained brain stem infection, foci of microglia infection in grey matter, and increased apoptotic cells. These data demonstrate a novel protective role for RNase L in viral induced CNS encephalomyelitis, which is not reflected in overall viral control or propagation of IFN-α/β mediated signals. Protective function is rather associated with cell type specific and regional restriction of viral replication in grey matter and ameliorated neurodegeneration and demyelination.  相似文献   
148.
Gazing at a giant redwood tree in the Pacific Northwest, that has grown to enormous heights over centuries, does little to convince one that plants are built for speed and versatility. Even at the cellular level, a system of polymers-the cell skeleton or cytoskeleton-integrates signals and generates subcellular structures spanning scales of a few nanometers to hundreds of micrometers that coordinate cell growth. The term cytoskeleton itself connotes a stable structure. Clearly, this is not the case. Recent studies using advanced imaging modalities reveal the plant actin cytoskeleton to be a highly dynamic, ever changing assemblage of polymers. These insights along with growing evidence about the biochemical/biophysical properties of plant cytoskeletal polymers, especially those obtained by single filament imaging and reconstituted systems of purified proteins analyzed by total internal reflection fluorescence microscopy, allow the generation of a unique model for the dynamic turnover of actin filaments, termed stochastic dynamics. Here, we review several significant advances and highlight opportunities that will position plants at the vanguard of research on actin organization and turnover. A challenge for the future will be to apply the power of reverse-genetics in several model organisms to test the molecular details of this new model.  相似文献   
149.
Novel curcumin analogs were synthesized using Knoevenagel condensation to convert enolic diketones of curcumin into non-enolizable ones and Schiff bases were prepared using a bioactive thiosemicarbazide pharmacophore. Copper(II) conjugates of all synthesized ligands were prepared and structurally characterized as well as evaluated for their potential of inhibiting TNF-induced NF-kappaB activation and proliferation in human leukemic KBM-5 cells wherein compound 13 was found to be more potent than curcumin. Compounds were further examined on other tumor cell lines such as Jurkat, H1299, and MM1, respectively.  相似文献   
150.
Substrate-induced conformational change of the protein is the linchpin of enzymatic reactions. Replicative DNA polymerases, for example, convert from an open to a closed conformation in response to dNTP binding. Human DNA polymerase-iota (hPoliota), a member of the Y family of DNA polymerases, differs strikingly from other polymerases in its much higher proficiency and fidelity for nucleotide incorporation opposite template purines than opposite template pyrimidines. We present here a crystallographic analysis of hPoliota binary complexes, which together with the ternary complexes show that, contrary to replicative DNA polymerases, the DNA, and not the polymerase, undergoes the primary substrate-induced conformational change. The incoming dNTP "pushes" templates A and G from the anti to the syn conformation dictated by a rigid hPoliota active site. Together, the structures posit a mechanism for template selection wherein dNTP binding induces a conformational switch in template purines for productive Hoogsteen base pairing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号