首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   683篇
  免费   47篇
  730篇
  2022年   6篇
  2021年   14篇
  2019年   9篇
  2018年   8篇
  2017年   7篇
  2016年   21篇
  2015年   19篇
  2014年   35篇
  2013年   17篇
  2012年   46篇
  2011年   65篇
  2010年   27篇
  2009年   23篇
  2008年   27篇
  2007年   16篇
  2006年   16篇
  2005年   18篇
  2004年   18篇
  2003年   22篇
  2002年   16篇
  2001年   24篇
  2000年   30篇
  1999年   21篇
  1998年   14篇
  1997年   6篇
  1996年   11篇
  1995年   10篇
  1994年   6篇
  1993年   6篇
  1992年   13篇
  1991年   14篇
  1990年   8篇
  1989年   6篇
  1988年   5篇
  1987年   12篇
  1986年   10篇
  1985年   4篇
  1984年   6篇
  1983年   11篇
  1982年   5篇
  1980年   9篇
  1979年   9篇
  1978年   5篇
  1976年   5篇
  1975年   4篇
  1974年   5篇
  1970年   4篇
  1967年   3篇
  1966年   8篇
  1965年   3篇
排序方式: 共有730条查询结果,搜索用时 11 毫秒
41.
Trigonopsis variabilis induced for D-amino acid oxidase and catalase was immobilized by entrapment in Polyacrylamide beads obtained by radiation polymerisation. Permeabilization of the cells was found to be essential for optimal activity of the enzymes in free cells. However, the process of entrapment itself was found to eliminate the permeability barrier of cells immobilized in Polyacrylamide. The two enzymes exhibited a differential response on Polyacrylamide entrapment. Thus, D-amino acid oxidase activity was stabilized to heat inactivation whereas catalase in the same cells showed a destabilization on entrapment in Polyacrylamide. The coimmobilized enzyme preparation showed an operational half life of 7–9 days after which the D-amino acid oxidase activity remained stable at a value 35–40% of that of the initial activity for a study period of 3 weeks. Coimmobilization of MnO2 was not effective in enhancing the operational life of the enzyme preparation.  相似文献   
42.

Background

Guidelines for frequency of Type 2 diabetes mellitus (DM) screening remain unclear, with proposed screening intervals typically based on expert opinion. This study aims to demonstrate that HbA1c screening intervals may differ substantially when considering individual risk for diabetes.

Methods

This was a multi-institutional retrospective open cohort study. Data were collected between April 1999 to March 2014 from one urban and one rural cohort in Japan. After categorization by age, we stratified individuals based on cardiovascular disease risk (Framingham 10-year cardiovascular risk score) and body mass index (BMI). We adapted a signal-to-noise method for distinguishing true HbA1c change from measurement error by constructing a linear random effect model to calculate signal and noise of HbA1c. Screening interval for HbA1c was defined as informative when the signal-to-noise ratio exceeded 1.

Results

Among 96,456 healthy adults, 46,284 (48.0%) were male; age (range) and mean HbA1c (SD) were 48 (30–74) years old and 5.4 (0.4)%, respectively. As risk increased among those 30–44 years old, HbA1c screening intervals for detecting Type 2 DM consistently decreased: from 10.5 (BMI <18.5) to 2.4 (BMI?>?30) years, and from 8.0 (Framingham Risk Score <10%) to 2.0 (Framingham Risk Score ≥20%) years. This trend was consistent in other age and risk groups as well; among obese 30–44 year olds, we found substantially shorter intervals compared to other groups.

Conclusion

HbA1c screening intervals for identification of DM vary substantially by risk factors. Risk stratification should be applied when deciding an optimal HbA1c screening interval in the general population to minimize overdiagnosis and overtreatment.
  相似文献   
43.
A critical step in animal development is the specification of primordial germ cells (PGCs), the precursors of the germline. Two seemingly mutually exclusive mechanisms are implemented across the animal kingdom: epigenesis and preformation. In epigenesis, PGC specification is non-autonomous and depends on extrinsic signaling pathways. The BMP pathway provides the key PGC specification signals in mammals. Preformation is autonomous and mediated by determinants localized within PGCs. In Drosophila, a classic example of preformation, constituents of the germ plasm localized at the embryonic posterior are thought to be both necessary and sufficient for proper determination of PGCs. Contrary to this longstanding model, here we show that these localized determinants are insufficient by themselves to direct PGC specification in blastoderm stage embryos. Instead, we find that the BMP signaling pathway is required at multiple steps during the specification process and functions in conjunction with components of the germ plasm to orchestrate PGC fate.  相似文献   
44.
Cyclic ADP-ribose (cADPR), synthesized by CD38, regulates intracellular calcium in uterine smooth muscle. CD38 is a transmembrane protein that has both ADP-ribosyl cyclase and cADPR hydrolase enzyme activities involved in cADPR metabolism. CD38 expression and its enzyme activities in uterine smooth muscle are regulated by estrogen. In the present study, we examined CD38 expression, its enzyme activities, and cADPR levels in myometrium obtained from rats at 14-17 days of gestation (preterm) and at parturition (term). CD38 expression, ADP-ribosyl cyclase activity, and cADPR levels were higher in uterine tissues obtained from term rats compared with that of preterm rats, while activity of cADPR hydrolase did not significantly change. In an effort to address whether changes in estrogen: progesterone ratio that occur during pregnancy account for the observed effects on CD38 expression and function, we determined the effect of different doses of progesterone in the presence of estrogen on CD38 expression and its enzyme activities in uterine smooth muscle obtained from ovariectomized rats. In myometrium obtained from ovariectomized rats, estrogen administration caused increased CD38 protein expression and ADP-ribosyl cyclase activity. The estrogen-induced increases in CD38 expression and ADP-ribosyl cyclase activity were inhibited by simultaneous administration of 10 or 20 mg of progesterone. These results indicate that the estrogen:progesterone ratio determines CD38 expression and ADP-ribosyl cyclase activity. These changes in CD38/cADPR pathway may contribute to increased uterine motility and onset of labor.  相似文献   
45.
Oxidative refolding of the dimeric alkaline protease inhibitor (API) from Streptomyces sp. NCIM 5127 has been investigated. We demonstrate here that both isomerase and chaperone functions of the protein folding catalyst, protein disulfide isomerase (PDI), are essential for efficient refolding of denatured-reduced API (dr-API). Although the role of PDI as an isomerase and a chaperone has been reported for a few monomeric proteins, its role as a foldase in refolding of oligomeric proteins has not been demonstrated hitherto. Spontaneous refolding and reactivation of dr-API in redox buffer resulted in 45% to 50% reactivation. At concentrations <0.25 microM, reactivation rates and yields of dr-API are accelerated by catalytic amounts of PDI through its isomerase activity, which promotes disulfide bond formation and rearrangement. dr-API is susceptible to aggregation at concentrations >25 microM, and a large molar excess of PDI is required to enhance reactivation yields. PDI functions as a chaperone by suppressing aggregation and maintains the partially unfolded monomers in a folding-competent state, thereby assisting dimerization. Simultaneously, isomerase function of PDI brings about regeneration of native disulfides. 5-Iodoacetamidofluorescein-labeled PDI devoid of isomerase activity failed to enhance the reactivation of dr-API despite its intact chaperone activity. Our results on the requirement of a stoichiometric excess of PDI and of presence of PDI in redox buffer right from the initiation of refolding corroborate that both the functions of PDI are essential for efficient reassociation, refolding, and reactivation of dr-API.  相似文献   
46.
A newly discovered enteric bacterium Leclercia adecarboxylata PS4040, isolated from oily sludge contaminated soil sample was reported for degradation of polycyclic aromatic hydrocarbons (Appl Environ Microbiol 70:3163–3166, 2004a). This strain could degrade 61.5% of pyrene within 20 days when used as sole source of carbon and energy. The time course degradation experiment detected several intermediate products and the metabolites were identified by gas chromatography mass spectrometry analysis. Metabolite I was the detected on the 5th day and was identified as 1-hydroxypyrene and was detected till 10th day. Metabolite II which was detected on 10th day was identified as 1,2-phenanthrenedicarboxylic acid. Metabolite III and Metabolite IV were identified as 2-carboxy benzaldehyde and ortho-phthalic acid, respectively and were detected in the culture broth on 10th and 15th day. 1,2-benzene diol (catechol) was the fifth metabolite detected in the culture extracts on the 15th day and was subsequently reduced on day 20. Identification of Metabolite I as 1-hydroxypyrene was further investigated as this intermediate was not previously reported as a ring oxidation product for degradation of pyrene by bacterial strains. Purification by preparative high performance liquid chromatography and nuclear magnetic resonance spectroscopy, confirmed the identification of Metabolite I as 1-hydroxypyrene. L. adecarboxylata PS4040 could also use 1-hydroxypyrene as a sole source of carbon and energy. Thus a probable pathway for degradation of pyrene by enteric bacterium is proposed in this study, with 1-hydroxypyrene as initial ring oxidation product.  相似文献   
47.

Background

The main processes in the pathogenesis of cerebral malaria caused by Plasmodium falciparum involved sequestration of parasitized red blood cells and immunopathological responses. Among immune factors, IgG autoantibodies to brain antigens are increased in P. falciparum infected patients and correlate with disease severity in African children. Nevertheless, their role in the pathophysiology of cerebral malaria (CM) is not fully defined. We extended our analysis to an Indian population with genetic backgrounds and endemic and environmental status different from Africa to determine if these autoantibodies could be either a biomarker or a risk factor of developing CM.

Methods/Principal Findings

We investigated the significance of these self-reactive antibodies in clinically well-defined groups of P. falciparum infected patients manifesting mild malaria (MM), severe non-cerebral malaria (SM), or cerebral malaria (CM) and in control subjects from Gondia, a malaria epidemic site in central India using quantitative immunoprinting and multivariate statistical analyses. A two-fold complete-linkage hierarchical clustering allows classifying the different patient groups and to distinguish the CM from the others on the basis of their profile of IgG reactivity to brain proteins defined by PANAMA Blot. We identified beta tubulin III (TBB3) as a novel discriminant brain antigen in the prevalence of CM. In addition, circulating IgG from CM patients highly react with recombinant TBB3. Overall, correspondence analyses based on singular value decomposition show a strong correlation between IgG anti-TBB3 and elevated concentration of cluster-II cytokine (IFNγ, IL1β, TNFα, TGFβ) previously demonstrated to be a predictor of CM in the same population.

Conclusions/Significance

Collectively, these findings validate the relationship between antibody response to brain induced by P. falciparum infection and plasma cytokine patterns with clinical outcome of malaria. They also provide significant insight into the immune mechanisms associated to CM by the identification of TBB3 as a new disease-specific marker and potential therapeutic target.  相似文献   
48.
49.
Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and Phaseolus. The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号