首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   505篇
  免费   45篇
  2023年   1篇
  2022年   4篇
  2021年   9篇
  2020年   5篇
  2019年   9篇
  2018年   8篇
  2017年   8篇
  2016年   15篇
  2015年   28篇
  2014年   37篇
  2013年   27篇
  2012年   32篇
  2011年   34篇
  2010年   33篇
  2009年   38篇
  2008年   45篇
  2007年   33篇
  2006年   19篇
  2005年   24篇
  2004年   30篇
  2003年   20篇
  2002年   12篇
  2001年   12篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1982年   3篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1973年   2篇
  1969年   2篇
  1968年   1篇
  1967年   2篇
  1964年   1篇
排序方式: 共有550条查询结果,搜索用时 671 毫秒
41.
A treatise on hazards of endocrine disruptors and tool to evaluate them   总被引:1,自引:0,他引:1  
Hormones mediate a major part of our essential physiological functions. Both endogenous and exogenous compounds and their metabolites are known to act through hormone receptors leading to regulation of endocrine function. The endogenous ligands that control reproductive functions are generally steroids such as 17beta-estradiol, androgens, progesterone, pregnenolone and glucocorticoids. However, exogenous compounds that are structurally and functionally similar gain entry into animals including humans through the diet or by occupational exposures, causing endocrine disruption. In the recent decade, there is a lot of apprehension about the so-called "endocrine disruptors" which are wide spread in the environment, mainly due to unrestricted human activity. These compounds of anthropogenic or natural origin mimic the action of sex hormones and can interfere with the endocrine system. It has been hypothesized that environmental exposure to synthetic estrogenic chemicals and related endocrine active compounds may be responsible for malformations in the male reproductive tract, crytorchidism, hypospadias, decrease in sperm counts, decreased male reproductive capacity and even testicular cancers. The increasing concern in both public and scientific communities about these abnormalities have prompted the initiation of epidemiological studies to not only identify, but to also analyze the short and long term effects of endocrine disruptors. As a result, a number of assays have been developed and are undergoing validation aimed at high throughput screening of chemical agents that disrupt endocrine activity. This review consolidates the findings of epidemiological studies, particularly in relation to male reproductive disorders and brings to light the various types of in vitro and in vivo models that are available for tiered testing of suspected compounds.  相似文献   
42.
Proteorhodopsin phototrophy was recently discovered in oceanic surface waters. In an effort to characterize uncultured proteorhodopsin-exploiting bacteria, large-insert bacterial artificial chromosome (BAC) libraries from the Mediterranean Sea and Red Sea were analyzed. Fifty-five BACs carried diverse proteorhodopsin genes, and we confirmed the function of five. We calculate that proteorhodopsin-exploiting bacteria account for 13% of microorganisms in the photic zone. We further show that some proteorhodopsin-containing bacteria possess a retinal biosynthetic pathway and a reverse sulfite reductase operon, employed by prokaryotes oxidizing sulfur compounds. Thus, these novel phototrophs are an unexpectedly large and metabolically diverse component of the marine microbial surface water.  相似文献   
43.
Profilin‐1 (Pfn1), a ubiquitously expressed actin‐binding protein, has gained interest in epithelial‐derived cancer because of its downregulation in expression in various adenocarcinoma. Pfn1 overexpression impairs tumorigenic ability of human breast cancer xenografts thus suggesting that Pfn1 could be a tumor‐suppressor protein. The objective of the present study was to determine how Pfn1 overexpression affects cell‐cycle progression of breast cancer cells. We show that Pfn1 overexpression in MDA‐MB‐231 breast cancer cells causes cell‐cycle arrest in G1 phase and dramatically reduced proliferation in culture. Pfn1 overexpression results in increased protein stability of p27kip1 (p27—a major cyclin‐dependent kinase inhibitor) and marked elevation in the overall cellular level of p27. Proliferation defect of Pfn1 overexpressers can be partly rescued by silencing p27 expression thus suggesting a critical role of p27 in Pfn1‐induced growth inhibition of MDA‐MB‐231 cells. Finally, Pfn1 overexpression was found to sensitize MDA‐MB‐231 cells to apoptosis in response to cytotoxic stimulus thus suggesting for the first time that survival of breast cancer cells can also be negatively influenced by Pfn1 upregulation. These findings may provide novel insights underlying Pfn1's tumor‐suppressive action. J. Cell. Physiol. 223:623–629, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
44.
Alcoholism can result in fatty liver that can progress to steatohepatitis, cirrhosis, and liver cancer. Mice fed alcohol develop fatty liver through endocannabinoid activation of hepatic CB1 cannabinoid receptors (CB1R), which increases lipogenesis and decreases fatty acid oxidation. Chronic alcohol feeding also up-regulates CB1R in hepatocytes in vivo, which could be replicated in vitro by co-culturing control hepatocytes with hepatic stellate cells (HSC) isolated from ethanol-fed mice, implicating HSC-derived mediator(s) in the regulation of hepatic CB1R (Jeong, W. I., Osei-Hyiaman, D., Park, O., Liu, J., Bátkai, S., Mukhopadhyay, P., Horiguchi, N., Harvey-White, J., Marsicano, G., Lutz, B., Gao, B., and Kunos, G. (2008) Cell Metab. 7, 227–235). HSC being a rich source of retinoic acid (RA), we tested whether RA and its receptors may regulate CB1R expression in cultured mouse hepatocytes. Incubation of hepatocytes with RA or RA receptor (RAR) agonists increased CB1R mRNA and protein, the most efficacious being the RARγ agonist CD437 and the pan-RAR agonist TTNPB. The endocannabinoid 2-arachidonoylglycerol (2-AG) also increased hepatic CB1R expression, which was mediated indirectly via RA, because it was absent in hepatocytes from mice lacking retinaldehyde dehydrogenase 1, the enzyme catalyzing the generation of RA from retinaldehyde. The binding of RARγ to the CB1R gene 5′ upstream domain in hepatocytes treated with RAR agonists or 2-AG was confirmed by chromatin immunoprecipitation and electrophoretic mobility shift and antibody supershift assays. Finally, TTNPB-induced CB1R expression was attenuated by small interfering RNA knockdown of RARγ in hepatocytes. We conclude that RARγ regulates CB1R expression and is thus involved in the control of hepatic fat metabolism by endocannabinoids.  相似文献   
45.
In bacteria, biogenesis of cell wall at the division site requires penicillin-binding protein 3 (PBP3) (or Ftsl). Using pull-down, bacterial two-hybrid, and peptide-based interaction assays, we provide evidence that FtsW of Mycobacterium tuberculosis (FtsWMTB) interacts with PBP3 through two extracytoplasmic loops. Pro306 in the larger loop and Pro386 in the smaller loop of FtsW are crucial for these interactions. Fluorescence microscopy shows that conditional silencing of ftsW in Mycobacterium smegmatis prevents cell septation and positioning of PBP3 at mid-cell. Pull-down assays and conditional depletion of FtsW in M. smegmatis provide evidence that FtsZ, FtsW and PBP3 of mycobacteria are capable of forming a ternary complex, with FtsW acting as a bridging molecule. Bacterial three-hybrid analysis suggests that in M. tuberculosis, the interaction (unique to mycobacteria) of FtsZ with the cytosolic C-tail of FtsW strengthens the interaction of FtsW with PBP3. ftsW of M. smegmatis could be replaced by ftsW of M. tuberculosis. FtsWMTB could support formation of the FtsZ-FtsW-PBP3 ternary complex in M. smegmatis. Our findings raise the possibility that in the genus Mycobacterium binding of FtsZ to the C-tail of FtsW may modulate its interactions with PBP3, thereby potentially regulating septal peptidoglycan biogenesis.  相似文献   
46.
Shao N  Vallon O  Dent R  Niyogi KK  Beck CF 《Plant physiology》2006,141(3):1128-1137
Mutants with defects in the cytochrome (cyt) b6/f complex were analyzed for their effect on the expression of a subgroup of nuclear genes encoding plastid-localized enzymes participating in chlorophyll biosynthesis. Their defects ranged from complete loss of the cytb6/f complex to point mutations affecting specifically the quinone-binding QO site. In these seven mutants, light induction of the tetrapyrrole biosynthetic genes was either abolished or strongly reduced. In contrast, a normal induction of chlorophyll biosynthesis genes was observed in mutants with defects in photosystem II, photosystem I, or plastocyanin, or in wild-type cells treated with 3-(3'4'-dichlorophenyl)-1,1-dimethylurea or 2,5-dibromo-3-methyl-6-isopropyl benzoquinone. We conclude that the redox state of the plastoquinone pool does not control light induction of these chlorophyll biosynthetic genes. The signal that affects expression of the nuclear genes appears to solely depend on the integrity of the cytb6/f complex QO site. Since light induction of these genes in Chlamydomonas has recently been shown to involve the blue light receptor phototropin, the results suggest that cytb6/f activity regulates a plastid-derived factor required for their expression. This signaling pathway differs from that which regulates state transitions, since mutant stt7, lacking a protein kinase involved in phosphorylation of the light-harvesting complex II, was not altered in the expression of the chlorophyll biosynthetic genes.  相似文献   
47.
48.
Cisplatin is a widely used antineoplastic agent; however, its major limitation is the development of dose-dependent nephrotoxicity whose precise mechanisms are poorly understood. Here we show not only that mitochondrial dysfunction is a feature of cisplatin nephrotoxicity, but also that targeted delivery of superoxide dismutase mimetics to mitochondria largely prevents the renal effects of cisplatin. Cisplatin induced renal oxidative stress, deterioration of mitochondrial structure and function, an intense inflammatory response, histopathological injury, and renal dysfunction. A single systemic dose of mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently prevented cisplatin-induced renal dysfunction. Mito-CP also prevented mitochondrial injury and dysfunction, renal inflammation, and tubular injury and apoptosis. Despite being broadly renoprotective against cisplatin, Mito-CP did not diminish cisplatin's antineoplastic effect in a human bladder cancer cell line. Our results highlight the central role of mitochondrially generated oxidants in the pathogenesis of cisplatin nephrotoxicity. Because similar compounds seem to be safe in humans, mitochondrially targeted antioxidants may represent a novel therapeutic approach against cisplatin nephrotoxicity.  相似文献   
49.
Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury; however, its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explore the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2h of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute proinflammatory response (TNF-α, MIP-1α/CCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and a more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6h of reperfusion and peaking at 24h). Mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), and mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号