首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1681篇
  免费   215篇
  1896篇
  2018年   20篇
  2016年   17篇
  2015年   42篇
  2014年   44篇
  2013年   60篇
  2012年   81篇
  2011年   69篇
  2010年   49篇
  2009年   54篇
  2008年   45篇
  2007年   73篇
  2006年   50篇
  2005年   58篇
  2004年   53篇
  2003年   56篇
  2002年   44篇
  2001年   52篇
  2000年   45篇
  1999年   43篇
  1998年   24篇
  1997年   24篇
  1996年   16篇
  1994年   20篇
  1993年   22篇
  1992年   32篇
  1991年   24篇
  1990年   52篇
  1989年   34篇
  1988年   31篇
  1987年   17篇
  1986年   21篇
  1985年   23篇
  1984年   25篇
  1983年   22篇
  1982年   23篇
  1981年   17篇
  1980年   15篇
  1979年   38篇
  1978年   21篇
  1977年   26篇
  1976年   24篇
  1975年   16篇
  1974年   23篇
  1973年   19篇
  1972年   20篇
  1971年   19篇
  1970年   22篇
  1969年   17篇
  1967年   18篇
  1966年   14篇
排序方式: 共有1896条查询结果,搜索用时 15 毫秒
91.
A microcomputer simulation model is presented that describesthe generalized plankton production dynamics, in the surfacemixed layer, of the Juan de Fuca Eddy located on the southwesternBritish Columbia continental shelf. The Juan de Fuca Eddy simulationmodel evaluates how the annual biomass production of diatoms,copepods and euphausiids is forced by plankton feeding interactions,seasonal variability in upwelling, water temperature and solarradiation, and generalized fish predation. The model estimatesannual primary production of 345 g C m–2 year–1and secondary production of 19.4 g C m–2 year–1for copepods and 6 g C m–2 year–1 for euphausiids,during 1985–89; -90% of the annual plankton productionwas generated during the April-October upwelling season. Perturbationsof 22 abiotic and biotic parameters, one at a time by ±10%of nominal values, indicated that oceanic variability (e.g.upwelling rate) most strongly affected primary production. Conversely,zooplankton production was most sensitive to variability inbiological parameters describing zooplankton grazing potentialand growth (e.g. gross growth efficiency). Simulated seasonalbiomass patterns of diatoms, copepods and euphausiids were foundto closely match empirical data. However, euphausiid biomassproduction in the Juan de Fuca Eddy alone was unable to meetthe demands of estimated pelagic fish consumption. Local Eddyeuphausiid populations had to be supplemented, from regionaleuphausiids. by a mechanism that is proposed to be linked tothe seasonal pattern and intensity of positive Ekman transport(upwelling).  相似文献   
92.
Ionizing radiation, oxidative stress and endogenous DNA-damage processing can result in a variety of single-strand breaks with modified 5' and/or 3' ends. These are thought to be one of the most persistent forms of DNA damage and may threaten cell survival. This study addresses the mechanism involved in recognition and processing of DNA strand breaks containing modified 3' ends. Using a DNA-protein cross-linking assay, we followed the proteins involved in the repair of oligonucleotide duplexes containing strand breaks with a phosphate or phosphoglycolate group at the 3' end. We found that, in human whole cell extracts, end-damage-specific proteins (apurinic/apyrimidinic endonuclease 1 and polynucleotide kinase in the case of 3' ends containing phosphoglycolate and phosphate, respectively) which recognize and process 3'-end-modified DNA strand breaks are required for efficient recruitment of X-ray cross-complementing protein 1-DNA ligase IIIalpha heterodimer to the sites of DNA repair.  相似文献   
93.
BACKGROUND: Dynamic actin assembly is required for diverse cellular processes and often involves activation of Arp2/3 complex. Cortactin and N-WASp activate Arp2/3 complex, alone or in concert. Both cortactin and N-WASp contain an acidic (A) domain that is required for Arp2/3 complex binding. RESULTS: We investigated how cortactin and the constitutively active VCA domain of N-WASp interact with Arp2/3 complex. Structural studies showed that cortactin is a thin, elongated monomer. Chemical crosslinking studies demonstrated selective interaction of the Arp2/3 binding NTA domain of cortactin (cortactin NTA) with the Arp3 subunit and VCA with Arp3, Arp2, and ARPC1/p40. Cortactin NTA and VCA crosslinking to the Arp3 subunit were mutually exclusive; however, cortactin NTA did not inhibit VCA crosslinking to Arp2 or ARPC1/p40, nor did it inhibit activation of Arp2/3 complex by VCA. We conducted an experiment in which a saturating concentration of cortactin NTA modestly lowered the binding affinity of VCA for Arp2/3; the results of this experiment provided further evidence for ternary complex formation. Consistent with a common binding site on Arp3, a saturating concentration of VCA abolished binding of cortactin to Arp2/3 complex. CONCLUSIONS: Under certain circumstances, cortactin and N-WASp can bind simultaneously to Arp2/3 complex, accounting for their synergy in activation of actin assembly. The interaction of cortactin NTA with Arp2/3 complex does not inhibit Arp2/3 activation by N-WASp, despite competition for a common binding site located on the Arp3 subunit. These results suggest a model in which cortactin may bridge Arp2/3 complex to actin filaments via Arp3 and N-WASp activates Arp2/3 complex by binding Arp2 and/or ARPC1/p40.  相似文献   
94.
95.
96.
Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.  相似文献   
97.
The effect of cadmium (Cd) on both the absorption of important nutrients and the synthesis of low molecular weight thiols (LMWTs) was investigated in corn plants. The inductively coupled plasma-optical emission spectroscopy results demonstrated that the concentration of Cd in tissues (mainly in roots) increased as the concentration in the medium increased. In addition, the concentration of phosphorus increased in roots of Cd treated plants but remained at normal concentration in shoots. On the other hand, the uptake of sulfur (S) followed a similar trend as the Cd uptake. The concentration of S and the production of LMWT were found to increase significantly upon exposure to Cd. The results of the X-ray absorption spectroscopy analyses indicated that Cd within tissues was bound to S ligands with interatomic distances of 2.51–2.52 Å. These results confirm a strong linkage between S uptake and the production of LMWT upon exposure to Cd.  相似文献   
98.
While the small GTPase Rac1 and its effectors are well-established mediators of mitogenic and motile signaling by tyrosine kinase receptors and have been implicated in breast tumorigenesis, little is known regarding the exchange factors (Rac-GEFs) that mediate ErbB receptor responses. Here, we identify the PIP(3)-Gβγ-dependent Rac-GEF P-Rex1 as an essential mediator of Rac1 activation, motility, cell growth, and tumorigenesis driven by ErbB receptors in breast cancer cells. Notably, activation of P-Rex1 in breast cancer cells requires the convergence of inputs from ErbB receptors and a Gβγ- and PI3Kγ-dependent pathway. Moreover, we identified the GPCR CXCR4 as a crucial mediator of P-Rex1/Rac1 activation in response to ErbB ligands. P-Rex1 is highly overexpressed in human breast cancers and their derived cell lines, particularly those with high ErbB2 and ER expression. In addition to the prognostic and therapeutic implications, our findings reveal an ErbB effector pathway that is crucial for breast cancer progression.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号