首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1660篇
  免费   215篇
  1875篇
  2018年   20篇
  2016年   17篇
  2015年   45篇
  2014年   44篇
  2013年   58篇
  2012年   81篇
  2011年   68篇
  2010年   49篇
  2009年   53篇
  2008年   44篇
  2007年   71篇
  2006年   51篇
  2005年   57篇
  2004年   54篇
  2003年   56篇
  2002年   44篇
  2001年   50篇
  2000年   42篇
  1999年   41篇
  1998年   22篇
  1997年   22篇
  1996年   14篇
  1994年   18篇
  1993年   22篇
  1992年   32篇
  1991年   24篇
  1990年   53篇
  1989年   34篇
  1988年   30篇
  1987年   16篇
  1986年   20篇
  1985年   23篇
  1984年   25篇
  1983年   21篇
  1982年   24篇
  1981年   17篇
  1980年   15篇
  1979年   38篇
  1978年   21篇
  1977年   26篇
  1976年   24篇
  1975年   16篇
  1974年   23篇
  1973年   20篇
  1972年   20篇
  1971年   18篇
  1970年   22篇
  1969年   17篇
  1967年   18篇
  1966年   14篇
排序方式: 共有1875条查询结果,搜索用时 15 毫秒
31.
Synopsis Horseradish peroxidase (HRP) administered close-arterially, has been found to enter rabbit submandibular saliva elicited by parasympathetic nerve stimulation. Adrenalin, superimposed on parasympathetic nerve stimulation, increased the passage of HRP into the saliva. Use of - and -adrenoceptor agonists, either separately or together, and use of - or -adrenoceptor antagonists together with adrenalin indicate that both - and -receptor stimulation is necessary for this increase in glandular permeability to occur. Histochemical assessment showed that HRP had permeated the interstitial spaces of the gland and entered the spaces between adjacent parenchymal cells. However, in unstimulated glands it had only reached the lumina of striated ducts, but after adrenalin administration, peroxidase was also observed within acinar lumina. This work indicates that the predominant pathway taken by the HRP was via intercellular spaces and it is suggested that the permeability between junctional complexes of parenchymal cells is capable of being modifiedin vivo.  相似文献   
32.
Summary Horseradish peroxidase (HRP) was administered to the submandibular glands of dogs by close-arterial bolus-type injections, and its localisation was examined histochemically by light and electron microscopy. The HRP became widespread in the interstices of the glands and reached many central acinar lumina via scattered localised parts of their tight junctional complexes. Reaction product was less often found in the lumina of demilunes, which suggested that the intercellular junctions there were less leaky. HRP was often found in sizeable spaces between myoepithelial cells and the underlying parenchymal cells; such large spaces have not been observed in this situation in other species. The possibility that permeability pathways may arise intermittently at different sites in the adhering mechanisms between the acinar cells is discussed.It is concluded that potential paracellular permeability pathways for macromolecules exist in these glands and, if the concentration gradient is sufficiently high, molecules even as large as those of HRP can to some extent permeate passively from the interstices to the saliva. In resting glands the principal permeability site is between the central acinar cells.Supported by Grants from the M.R.C. and the V.R.T. King's College HospitalWe wish to acknowledge the technical help of Mr. K.J. Davies and Mr. P.S.A. Rowley  相似文献   
33.
A technique has been developed to prevent leakage of proteins immobilized on Sepharose without destroying their biological functions. This involves the use of glutaraldehyde at concentrations ranging from 0.015 to 0.25% (vv) to crosslink proteins, which had been coupled to Sepharose by conventional methods. Glutaraldehyde crosslinking decreases immuno-globulin G leakage from Sepharose-immunoadsorbents to undetectable levels without noticeably affecting antigen-binding activity and reduces leakage of lactoperoxidase from solid-phase lactoperoxidase with only a moderate reduction of enzymatic activity.  相似文献   
34.
Small-angle X-ray scattering data suggest that major but reversible rearrangements of mitochondrial inner membrane structure are induced by uncouplers. Low levels of 2,4-dinitrophenol (10 μM) cause a perceptible wide-angle shift of the 20 mrad X-ray scattering maximum characteristic of intact liver mitochondria. Higher dinitrophenol concentrations (> 25 μM) reduce this scattering maximum to one-third its initial intensity. In terms of mitochondrial function, the former scattering change appears to correlate with the uncoupling of oxidative phosphorylation while the latter occurs in the course of dinitrophenol stimulation of mitochondrial ATPase activity.  相似文献   
35.
36.
The arginine residue at position 308 in the Flp recombinase corresponds to the only invariant arginine within the Int family of recombinases. Alterations of this residue result in Flp variants that retain substrate recognition, but form weaker protein-DNA complexes than wild type Flp. Furthermore, their DNA cleavage activity is significantly diminished. A conservative change of R308K results in a functional Flp variant; however, this protein has a lowered temperature optimum for recombination. The Arg-308 mutants can be stabilized on the DNA substrate through cooperativity with a partner Flp mutant that is tight binding. Thus, interactions between Flp monomers must be a relevant feature of the normal recombination reaction.  相似文献   
37.
We have defined a new autosomal recessive disorder in patients stemming from a small community in northern Mexico. Diagnosable at birth, its major symptoms include brittle hair, mental retardation, and nail dysplasia. Structural hair abnormalities are seen by both light and electron microscopy. Hair cystine content is reduced while the copper/zinc ratio in hair is increased.  相似文献   
38.
Etiolated pea (Pisum sativum cv. Midfreezer) seedlings respond to illumination with white light by changes in the activity of phenylpropanoid and flavonoid synthesizing enzymes. Unlike in cell cultures, changes in enzyme activity in pea seedlings are not concerted. Phenylalanine ammonia-lyase (EC 4.3.1.5) activity peaked approximately 18 hours after onset of illumination. The phenylacetate path did not interfere with the measurement of phenylalanine ammonia-lyase activity. Activity of cinnamic acid 4-hydroxylase (EC 1.14.13.11) showed an early peak after 8 hours illumination, declined thereafter sharply, then gradually increased during the remainder of the experiment. Activities of chalcone synthase and UDP glucose:flavonol 3-O-glucosyltransferase (EC 2.4.1.91) increased steadily and reached a plateau after approximately 70 hours illumination time. Activity of 4-hydroxycinnamate:coenzyme A ligase (EC 6.2.1.12) remained relatively unchanged, whereas that of chalcone isomerase (EC 5.5.1.6) declined steadily during the course of the experiment. The relative in vitro enzyme activities suggest that the rate-limiting step for the phenylpropanoid path is the cinnamic acid 4-hydroxylase, that of the flavonoid pathway is the chalcone synthase. Integration of enzyme activity curves, however, show that only the curve deriving from phenylanine ammonia-lyase activity matches closely the production of the flavonol glycosides.  相似文献   
39.
The avian retrovirus pp32 protein possesses a DNA-nicking activity which prefers supercoiled DNA as substrate. We have investigated the binding of pp32 to avian retrovirus long terminal repeat (LTR) DNA present in both supercoiled and linear forms. The cloned viral DNA was derived from unintegrated Schmidt-Ruppin A (SRA) DNA. A subclone of the viral DNA in pBR322 (termed pPvuII-DG) contains some src sequences, tandem copies of LTR sequences, and partial gag sequences in the order src-U(3) U(5):U(3) U(5)-gag. Binding of pp32 to supercoiled pPvuII-DG DNA followed by digestion of this complex with a multicut restriction enzyme (28 fragments total) permitted pp32 to preferentially retain on nitrocellulose filters two viral DNA fragments containing only LTR DNA sequences. In addition, pp32 also preferentially retained four plasmid DNA fragments containing either potential promoters or Tn3 "left-end" inverted repeat sequences. Mapping of the pp32 binding sites on viral LTR DNA was accomplished by using the DNase I footprinting technique. The pp32 protein, but not the avian retrovirus alphabeta DNA polymerase, is able to form a unique protein-DNA complex with selected regions of either SRA or Prague A LTR DNAs. Partial DNase I digestion of a 275-base pair SRA DNA fragment complexed with pp32 gives upon electrophoresis in denaturing gels a unique ladder pattern, with regions of diminished DNase I susceptibility from 6 to 10 nucleotides in length, in comparison with control digests in the absence of protein. The binding of pp32 to this fragment also yields enhanced DNase I-susceptible sites that are spaced between the areas protected from DNase I digestion. The protected region of this unique complex was a stretch of 170 +/- 10 nucleotides that encompasses the presumed viral promoter site in U(3), which is adjacent to the src region, extends through U(5), and proceeds past the joint into U(3) for about 34 base pairs. No specific protection or DNase I enhancement by pp32 was observed in experiments with a 435-base pair SRA DNA fragment derived from a part of U(3) and the adjacent src region or a 55-base pair DNA fragment derived from another part of U(3). The DNA sequence of Prague A DNA at the fused LTRs differs from that of SRA DNA. The alteration in the sequence at the juncture of the LTRs prevented pp32 from forming a stable complex in this region of the LTR. Our results are relevant to two aspects of the interaction between pp32 and LTR DNA. First, the pp32 protein in the presence of selected viral DNA restriction fragments possibly forms a higher order oligomer analogous to Escherichia coli DNA gyrase-DNA complexes or eucaryotic nucleosome structures. Second, the specificity of the binding suggests a role for pp32 and the protected DNA sequences in the retrovirus life cycle. The preferred sequences to which pp32 binds include two adjacent 15-base pair inverted terminal repeats at the joint between U(5) and U(3) in SRA DNA. This region is involved in circularization of linear DNA and is perhaps the site that directs integration into cellular DNA.  相似文献   
40.
We have examined the arrangement of integrated avian sarcoma virus (ASV) DNA sequences in several different avian sarcoma virus transformed mammalian cell lines, in independently isolated clones of avian sarcoma virus transformed rat liver cells, and in morphologically normal revertants of avian sarcoma virus transformed rat embryo cells. By using restriction endonuclease digestion, agarose gel electrophoresis, Southern blotting, and hybridization with labeled avian sarcoma virus complementary DNA probes, we have compared the restriction enzyme cleavage maps of integrated viral DNA and adjacent cellular DNA sequences in four different mouse and rat cell lines transformed with either Bratislava 77 or Schmidt-Ruppin strains of avian sarcoma virus. The results of these experiments indicated that the integrated viral DNA resided at a different site within the host cell genome in each transformed cell line. A similar analysis of several independently derived clones of Schmidt-Ruppin transformed rat liver cells also revealed that each clone contained a unique cellular site for the integration of proviral DNA. Examination of several morphologically normal revertants and spontaneous retransformants of Schmidt-Ruppin transformed rat embryo cells revealed that the internal arrangement and cellular integration site of viral DNA sequences was identical with that of the transformed parent cell line. The loss of the transformed phenotype in these revertant cell lines, therefore, does not appear to be the result of rearrangement or deletions either within the viral genome or in adjacent cellular DNA sequences. The data presented support a model for ASV proviral DNA integration in which recombination can occur at multiple sites within the mammalian cell genome. The integration and maintenance of at least one complete copy of the viral genome appear to be required for continuous expression of the transformed phenotype in mammalian cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号