首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1713篇
  免费   218篇
  2018年   20篇
  2016年   23篇
  2015年   49篇
  2014年   47篇
  2013年   58篇
  2012年   87篇
  2011年   70篇
  2010年   53篇
  2009年   53篇
  2008年   49篇
  2007年   74篇
  2006年   53篇
  2005年   61篇
  2004年   56篇
  2003年   58篇
  2002年   46篇
  2001年   52篇
  2000年   43篇
  1999年   42篇
  1998年   21篇
  1997年   22篇
  1996年   16篇
  1995年   15篇
  1994年   17篇
  1993年   24篇
  1992年   33篇
  1991年   25篇
  1990年   52篇
  1989年   34篇
  1988年   30篇
  1987年   16篇
  1986年   21篇
  1985年   23篇
  1984年   24篇
  1983年   21篇
  1982年   24篇
  1981年   18篇
  1980年   15篇
  1979年   38篇
  1978年   21篇
  1977年   26篇
  1976年   24篇
  1975年   15篇
  1974年   23篇
  1973年   19篇
  1972年   20篇
  1971年   18篇
  1970年   22篇
  1969年   17篇
  1967年   18篇
排序方式: 共有1931条查询结果,搜索用时 171 毫秒
61.
Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) family members are essential and evolutionary conserved determinants of blood cell development and dispersal. In addition, VEGFs are integral to vascular growth and permeability with detrimental contributions to ischemic diseases and metastatic cancers. The PDGF/VEGF-receptor related (Pvr) protein is implicated in the migration and trophic maintenance of macrophage-like hemocytes in Drosophila melanogaster embryos. pvr mutants have a depleted hemocyte population and a breakdown in hemocyte distribution. Previous studies suggested redundant functions for the Pvr ligands, Pvf2 and Pvf3 in the regulation of hemocyte migration, proliferation, and size. However, the precise roles that Pvf2 and Pvf3 play in hematopoiesis remain unclear due to the lack of available mutants. To determine Pvf2 and Pvf3 functions in vivo, we generated a genomic deletion that simultaneously disrupts Pvf2 and Pvf3. From our studies, we identified contributions of Pvf2 and Pvf3 to the Pvr trophic maintenance of hemocytes. Furthermore, we uncovered a novel role for Pvfs in invasive migrations. We showed that Pvf2 and Pvf3 are not required for the directed migration of hemocytes, but act locally in epithelial cells to coordinate trans-epithelial migration of hemocytes. Our findings redefine Pvf roles in hemocyte migration and highlight novel Pvf roles in hemocyte invasive migration. These new parallels between the Pvr and PDGF/VEGF pathways extend the utility of the Drosophila embryonic system to dissect physiological and pathological roles of PDGF/VEGF-like growth factors.  相似文献   
62.
63.
64.
65.
A complex between bovine lutropin (LH) and monovalent antibodies (Fab fragments) directed against its alpha subunit, which is common to the glycoprotein hormones, has been purified by gel filtration and chromatography on concanavalin A-Sepharose. The complex is heterogenous with respect to molecular size; 70--80% of the hormone is complexed with either two or three Fab fragments. The LH-Fab alpha complexes retain only about 13% receptor binding activity as compared to LH when measured in a radioligand receptor assay in which the radiolabeled ligand is human choriogonadotropin. (Use of the human hormone as labeled ligand permits direct measurement of competition between receptor and the bovine complex because the alpha portion of the human hormone does not cross react significantly with antibodies directed against bovine alpha subunits.) Complex formation does not lead to dissociation of the lutropin into its subunits, as shown with a homologous LH-beta immunoassay which distinguishes free beta subunit from intact LH. Complexing of LH with Fab-alpha fragments also causes little or no change in the affinity of the hormone's beta subunit for anti-LH-beta antibodies indicating that significant changes in beta subunit conformation did not occur. The data show that at least two well-separated antigenic regions on the alpha subunit are exposed to the surface in the intact hormone. They are also in agreement with the proposal that the loss of binding activity to receptor is due to steric effects rather than to changes in conformation or dissociation, and that there may be sites on the alpha subunit which interact directly with the receptor.  相似文献   
66.
The sequence of events from a diatom to a flagellate bloom were simulated in a large sea-water enclosure. The two factors used to control the sequence were light and nutrients. The results indicate that diatom growth can be manipulated to occur under specific conditions of light intensity and nutrient concentrations. Once diatom growth has begun it appears to be more rapid than that of the flagellates. The importance of this experiment to the study of food chain Ecology in the sea is discussed.  相似文献   
67.
Extreme-environment heterosis and genetic loads   总被引:4,自引:0,他引:4  
P A Parsons 《Heredity》1971,26(3):479-482
  相似文献   
68.
69.
The generation of variation is paramount for the action of natural selection. Although biologists are now moving beyond the idea that random mutation provides the sole source of variation for adaptive evolution, we still assume that variation occurs randomly. In this review, we discuss an alternative view for how phenotypic plasticity, which has become well accepted as a source of phenotypic variation within evolutionary biology, can generate nonrandom variation. Although phenotypic plasticity is often defined as a property of a genotype, we argue that it needs to be considered more explicitly as a property of developmental systems involving more than the genotype. We provide examples of where plasticity could be initiating developmental bias, either through direct active responses to similar stimuli across populations or as the result of programmed variation within developmental systems. Such biased variation can echo past adaptations that reflect the evolutionary history of a lineage but can also serve to initiate evolution when environments change. Such adaptive programs can remain latent for millions of years and allow development to harbor an array of complex adaptations that can initiate new bouts of evolution. Specifically, we address how ideas such as the flexible stem hypothesis and cryptic genetic variation overlap, how modularity among traits can direct the outcomes of plasticity, and how the structure of developmental signaling pathways is limited to a few outcomes. We highlight key questions throughout and conclude by providing suggestions for future research that can address how plasticity initiates and harbors developmental bias.  相似文献   
70.
Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号