首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   24篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2018年   2篇
  2016年   2篇
  2015年   5篇
  2014年   6篇
  2013年   10篇
  2012年   14篇
  2011年   6篇
  2010年   5篇
  2009年   7篇
  2008年   3篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   6篇
  2003年   7篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   7篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   8篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1982年   1篇
  1981年   2篇
  1979年   2篇
  1977年   2篇
  1975年   4篇
  1974年   3篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有167条查询结果,搜索用时 31 毫秒
51.
Nucleotide incorporation by the herpes simplex virus type 1 DNA polymerase catalytic subunit (pol) is less faithful than for most replicative DNA polymerases, despite the presence of an associated 3'- to 5'-exonuclease (exo) activity. To determine the aspects of fidelity affected by the exo activity, nucleotide incorporation and mismatch extension frequency for purified wild-type and an exo-deficient mutant (D368A) pol were compared using primer/templates that varied at only a single position. For both enzymes, nucleotide discrimination during incorporation occurred predominantly at the level of K(m) for nucleotide and was the major contributor to fidelity. The contribution of the exo activity to reducing the efficiency of formation of half of all possible mispairs was 6-fold or less, and 30-fold when averaged for the formation of all possible mispairs. In steady-state reactions, mismatches imposed a significant kinetic barrier to extension independent of exo activity. However, during processive DNA synthesis in the presence of only three nucleotides, misincorporation and mismatch extension were efficient for both exo-deficient and wild-type pol catalytic subunits, although slower kinetics of mismatch extension by the exo-deficient pol were observed. The UL42 processivity factor decreased the extent of misincorporation by both the wild-type and the exo-deficient pol to similar levels, but mismatch extension by the wild-type pol.UL42 complex was much less efficient than by the mutant pol.UL42. Thus, despite relatively frequent (1 in 300) misincorporation events catalyzed by wild-type herpes simplex virus pol.UL42 holoenzyme, mismatch extension occurs only rarely, prevented in part by the kinetic barrier to extending a mismatch. The kinetic barrier also increases the probability that a mismatched primer terminus will be transferred to the exo site where it can be excised by the associated exo activity and subsequently extended with correct nucleotide.  相似文献   
52.
Calcium ions (Ca(2+)), protons (H(+)), and borate (B(OH)(4)(-)) are essential ions in the control of tip growth of pollen tubes. All three ions may interact with pectins, a major component of the expanding pollen tube cell wall. Ca(2+ )is thought to bind acidic residues, and cross-link adjacent pectin chains, thereby strengthening the cell wall. Protons are loosening agents; in pollen tube walls they may act through the enzyme pectin methylesterase (PME), and either reduce demethylation or stimulate hydrolysis of pectin. Finally, borate cross-links monomers of rhamnogalacturonan II (RG-II), and thus stiffens the cell wall. It is demonstrated here that changing the extracellular concentrations of Ca(2+), H(+) and borate affect not only the average growth rate of lily pollen tubes, but also influence the period of growth rate oscillations. The most dramatic effects are observed with increasing concentrations of Ca(2+) and borate, both of which markedly reduce the rate of growth of oscillating pollen tubes. Protons are less active, except at pH 7.0 where growth is inhibited. It is noteworthy, especially with borate, that the faster growing tubes exhibit the shorter periods of oscillation. The results are consistent with the idea that binding of Ca(2+) and borate to the cell wall may act at a similar level to alter the mechanical properties of the apical cell wall, with optimal concentrations being high enough to impart sufficient rigidity to the wall so as to prevent bursting in the face of cell turgor, but low enough to allow the wall to stretch quickly during periods of accelerating growth.  相似文献   
53.
54.
The murid rodent subfamily Sigmodontinae contains 79 genera which are distributed throughout the New World. The time of arrival of the first sigmodontines in South America and the estimated divergence time(s) of the different lineages of South American sigmodontines have been controversial due to the lack of a good fossil record and the immense number of extant species. The "early-arrival hypothesis" states that the sigmodontines must have arrived in South America no later than the early Miocene, at least 20 MYA, in order to account for their vast present-day diversity, whereas the "late-arrival hypothesis" includes the sigmodontines as part of the Plio-Pleistocene Great American Interchange, which occurred approximately 3.5 MYA. The phylogenetic relationships among 33 of these genera were reconstructed using mitochondrial DNA (mtDNA) sequence data from the ND3, ND4L, arginine tRNA, and ND4 genes, which we show to be evolving at the same rate. A molecular clock was calibrated for these genes using published fossil dates, and the genetic distances were estimated from the DNA sequences in this study. The molecular clock was used to estimate the dates of the South American sigmodontine origin and the main sigmodontine radiation in order to evaluate the "early-" and "late-arrival" scenarios. We estimate the time of the sigmodontine invasion of South America as between approximately 5 and 9 MYA, supporting neither of the scenarios but suggesting two possible models in which the invading lineage was either (1) ancestral to the oryzomyines, akodonts, and phyllotines or (2) ancestral to the akodonts and phyllotines and accompanied by the oryzomyines. The sigmodontine invasion of South America provides an example of the advantage afforded to a lineage by the fortuitous invasion of a previously unexploited habitat, in this case an entire continent.   相似文献   
55.
When microbes evolve in a continuous, nutrient-limited environment, natural selection can be predicted to favor genetic changes that give cells greater access to limiting substrate. We analyzed a population of baker's yeast that underwent 450 generations of glucose-limited growth. Relative to the strain used as the inoculum, the predominant cell type at the end of this experiment sustains growth at significantly lower steady-state glucose concentrations and demonstrates markedly enhanced cell yield per mole glucose, significantly enhanced high-affinity glucose transport, and greater relative fitness in pairwise competition. These changes are correlated with increased levels of mRNA hybridizing to probe generated from the hexose transport locus HXT6. Further analysis of the evolved strain reveals the existence of multiple tandem duplications involving two highly similar, high- affinity hexose transport loci, HXT6 and HXT7. Selection appears to have favored changes that result in the formation of more than three chimeric genes derived from the upstream promoter of the HXT7 gene and the coding sequence of HXT6. We propose a genetic mechanism to account for these changes and speculate as to their adaptive significance in the context of gene duplication as a common response of microorganisms to nutrient limitation.   相似文献   
56.
A DNA- temperature-sensitive mutant of herpes simplex virus type 1 exhibiting thermolabile DNA polymerase activity, tsD9, was shown to be resistant to phosphonoacetic acid (PAA) when plated at the permissive temperature. ts+ revertants of tsD9 were PAA sensitive and exhibited DNA polymerase activity intermediate between that of the wild-type virus and tsD9, indicating that both temperature sensitivity and sensitivity to PAA are controlled by the same gene. Since the position of tsD9 on the existing herpes simplex virus type 1 linkage map is known, the locus for PAA resistance--and therefore for the structural gene for viral DNA polymerase--has been identified.  相似文献   
57.
C N Parris  M M Seidman 《Gene》1992,117(1):1-5
We have developed a new shuttle vector plasmid for studying mutagenesis in mammalian cells that permits proof of independence of identical mutations. Mutations occur more frequently at some sites in a gene than in others, and in a collection of mutant plasmids from a single transfection of mammalian cells the same mutation may appear several times. However, those arising from independent events cannot be distinguished from siblings of an initial event. The new vector system (pSP189) is a population of plasmids, each of which contains an 8-bp 'signature sequence'. This sequence confers a unique identification tag to each plasmid and allows individual members to be identified by a distinctive signature. The plasmid also carries the Escherichia coli bacterial supF gene as a marker for mutagenesis, as well as sequences which support replication in primate (including human) cells and E. coli. We have used the pSP189 system to generate a UV-induced spectrum of mutations in supF following replication in a single plate of human DNA-repair-deficient cells (xeroderma pigmentosum, complementation group A). With the signature sequence, we were able to determine whether identical mutations derived from the transfection were of independent or sibling origin. There were eight identical mutations at the strongest hotspot, all of which had different signature sequences. Only one of these events would have been reported in previous experiments. This plasmid reduces the effort required to generate a spectrum of mutations caused by a DNA-damaging agent and allows a more accurate assessment of mutational hotspot intensity.  相似文献   
58.
Meaburn KJ  Parris CN  Bridger JM 《Chromosoma》2005,114(4):263-274
Microcell-mediated chromosome transfer (MMCT) was a technique originally developed in the 1970s to transfer exogenous chromosome material into host cells. Although, the methodology has not changed considerably since this time it is being used to great success in progressing several different fields in modern day biology. MMCT is being employed by groups all over the world to hunt for tumour suppressor genes associated with specific cancers, DNA repair genes, senescence-inducing genes and telomerase suppression genes. Some of these genomic discoveries are being investigated as potential treatments for cancer. Other fields have taken advantage of MMCT, and these include assessing genomic stability, genomic imprinting, chromatin modification and structure and spatial genome organisation. MMCT has also been a very useful method in construction and manipulation of artificial chromosomes for potential gene therapies. Indeed, MMCT is used to transfer mainly fragmented mini-chromosome between cell types and into embryonic stem cells for the construction of transgenic animals. This review briefly discusses these various uses and some of the consequences and advancements made by different fields utilising MMCT technology. Review related to the 15th International Chromosome Conference (ICC XV), held in September 2004, Brunel University, London, UK  相似文献   
59.
Boyle J  Kill IR  Parris CN 《Aging cell》2005,4(5):247-255
We have examined the relationship between nucleotide excision of the main UV-induced photoproduct, the cyclobutane pyrimidine dimer and in vitro cellular senescence. An in situ semiquantitative immunocytochemical assay has demonstrated that, following a UV-C dose of 15 J m-2, young human dermal fibroblasts maintained in a high level of serum are more efficient than senescent fibroblasts in the removal of dimers. However, in G0-arrested cultures (serum-starved), young fibroblasts are compromised in their ability to remove dimers and are significantly less efficient than senescent cells in this process. Supplementation of the culture medium with 0.1 mm deoxyribonucleosides enhances the removal of dimers in both young and senescent fibroblasts in proliferating or serum-starved cells. These data indicate that overall there is a modest but significant reduction in nucleotide excision of dimer photoproducts in cells as they age in vitro. In addition, G0-arrested young cells exhibit reduced removal of dimers, although this can be complemented by deoxyribonucleoside addition. In addition, this in situ assay has revealed heterogeneity in both susceptibility to UV-C-induced damage and excision. Overall, we provide evidence of reduced UV-induced damage excision in senescent compared with young fibroblasts, and demonstrate modulation of these processes in young and senescent cells under specific growth conditions.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号