首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   24篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2018年   2篇
  2016年   2篇
  2015年   5篇
  2014年   6篇
  2013年   10篇
  2012年   14篇
  2011年   6篇
  2010年   5篇
  2009年   7篇
  2008年   3篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   6篇
  2003年   7篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   7篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   8篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1982年   1篇
  1981年   2篇
  1979年   2篇
  1977年   2篇
  1975年   4篇
  1974年   3篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
111.

Background

Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes in its genome related to the various steps in the infective process, drug resistance and mobile genetic elements.

Results

For acid and bile resistance, L. hongkongensis possessed a urease gene cassette, two arc gene clusters and bile salt efflux systems. For intestinal colonization, it possessed a putative adhesin of the autotransporter family homologous to those of diffusely adherent Escherichia coli (E. coli) and enterotoxigenic E. coli. To evade from host defense, it possessed superoxide dismutase and catalases. For lipopolysaccharide biosynthesis, it possessed the same set of genes that encode enzymes for synthesizing lipid A, two Kdo units and heptose units as E. coli, but different genes for its symmetrical acylation pattern, and nine genes for polysaccharide side chains biosynthesis. It contained a number of CDSs that encode putative cell surface acting (RTX toxin and hemolysins) and intracellular cytotoxins (patatin-like proteins) and enzymes for invasion (outer membrane phospholipase A). It contained a broad variety of antibiotic resistance-related genes, including genes related to β-lactam (n = 10) and multidrug efflux (n = 54). It also contained eight prophages, 17 other phage-related CDSs and 26 CDSs for transposases.

Conclusions

The L. hongkongensis genome possessed genes for acid and bile resistance, intestinal mucosa colonization, evasion of host defense and cytotoxicity and invasion. A broad variety of antibiotic resistance or multidrug resistance genes, a high number of prophages, other phage-related CDSs and CDSs for transposases, were also identified.  相似文献   
112.
The inhibitory effects of exogenous melatonin (MEL) on colon oncogenesis were investigated using an azoxymethane (AOM)/dextran sodium sulfate (DSS) rat model. Male F344 rats initiated with a single intraperitoneal injection of AOM (20 mg/kg bw) were promoted by 1% (w/v) DSS in drinking water for 7 days. They were then given 0.4, 2 or 10 ppm MEL in drinking water for 17 weeks. At week 20, the development of colonic adenocarcinoma was significantly inhibited by the administration with MEL dose-dependently. MEL exposure modulated the mitotic and apoptotic indices in the colonic adenocarcinomas that developed and lowered the immunohistochemical expression of nuclear factor kappa B, tumor necrosis factor α, interleukin-1β and STAT3 in the epithelial malignancies. These results may indicate the beneficial effects of MEL on colitis-related colon carcinogenesis and a potential application for inhibiting colorectal cancer development in the inflamed colon.  相似文献   
113.
SM Hanlon  JL Kerby  MJ Parris 《PloS one》2012,7(8):e43573
Amphibians are often exposed to a wide variety of perturbations. Two of these, pesticides and pathogens, are linked to declines in both amphibian health and population viability. Many studies have examined the separate effects of such perturbations; however, few have examined the effects of simultaneous exposure of both to amphibians. In this study, we exposed larval southern leopard frog tadpoles (Lithobates sphenocephalus) to the chytrid fungus Batrachochytrium dendrobatidis and the fungicide thiophanate-methyl (TM) at 0.6 mg/L under laboratory conditions. The experiment was continued until all larvae completed metamorphosis or died. Overall, TM facilitated increases in tadpole mass and length. Additionally, individuals exposed to both TM and Bd were heavier and larger, compared to all other treatments. TM also cleared Bd in infected larvae. We conclude that TM affects larval anurans to facilitate growth and development while clearing Bd infection. Our findings highlight the need for more research into multiple perturbations, specifically pesticides and disease, to further promote amphibian heath.  相似文献   
114.
The immune system is a necessary, but potentially costly, defense against infectious diseases. When nutrition is limited, immune activity may consume a significant amount of an organism’s energy budget. Levels of dietary protein affect immune system function; high levels can enhance disease resistance. We exposed southern leopard frog [Lithobates sphenocephalus (=Rana sphenocephala)] tadpoles to high and low protein diets crossed with the presence or absence of the pathogenic amphibian chytrid fungus (Batrachochytrium dendrobatidis; Bd) and quantified: (1) tadpole resistance to Bd; (2) tadpole skin-swelling in response to phytohaemagglutinin (PHA) injection (a measure of the T cell-mediated response of the immune system); (3) bacterial killing ability (BKA) of tadpole blood (a measure of the complement-mediated cytotoxicity of the innate immune system); and (4) tadpole growth and development. Tadpoles raised on a low-protein diet were smaller and less developed than tadpoles on a high-protein diet. When controlled for developmental stage, tadpoles raised on a low-protein diet had reduced PHA and BKA responses relative to tadpoles on a high-protein diet, but these immune responses were independent of Bd exposure. High dietary protein significantly increased resistance to Bd. Our results support the general hypothesis that host condition can strongly affect disease resistance; in particular, fluctuations in dietary protein availability may change how diseases affect populations in the field.  相似文献   
115.
Cerebellin precursor protein 1 (Cbln1) is the prototype of a family of secreted neuronal glycoproteins (Cbln1-4) and its genetic elimination results in synaptic alterations in cerebellum (CB) and striatum. In CB, Cbln1 acts as a bi-functional ligand bridging pre-synaptic β-neurexins on granule cells to post-synaptic Grid2 on Purkinje neurons. Although much is known concerning the action of Cbln1, little is known of the function of its other family members. Here, we show that Cbln1 and Cbln2 have similar binding activities to β-neurexins and Grid2 and the targeted ectopic expression of Cbln2 to Purkinje cells in transgenic mice rescues the cerebellar deficits in Cbln1-null animals: suggesting that the two proteins have redundant function mediated by their common receptor binding properties. Cbln1 and Cbln2 are also co-expressed in the endolysosomal compartment of the thalamic neurons responsible for the synaptic alterations in striatum of Cbln1-null mice. Therefore, to determine whether the two family members have similar functions, we generated Cbln2-null mice. Cbln2-null mice do not show the synaptic alterations evident in striatum of Cbln1-null mice. Thus, Cbln2 can exhibit functional redundancy with Cbln1 in CB but it does not have the same properties as Cbln1 in thalamic neurons, implying one or both utilize different receptors/mechanisms in this brain region.  相似文献   
116.
BACKGROUND: Holo-(acyl carrier protein) synthase (AcpS), a member of the phosphopantetheinyl transferase superfamily, plays a crucial role in the functional activation of acyl carrier protein (ACP) in the fatty acid biosynthesis pathway. AcpS catalyzes the attachment of the 4'-phosphopantetheinyl moiety of coenzyme A (CoA) to the sidechain of a conserved serine residue on apo-ACP. RESULTS: We describe here the first crystal structure of a type II ACP from Bacillus subtilis in complex with its activator AcpS at 2.3 A. We also have determined the structures of AcpS alone (at 1.8 A) and AcpS in complex with CoA (at 1.5 A). These structures reveal that AcpS exists as a trimer. A catalytic center is located at each of the solvent-exposed interfaces between AcpS molecules. Site-directed mutagenesis studies confirm the importance of trimer formation in AcpS activity. CONCLUSIONS: The active site in AcpS is only formed when two AcpS molecules dimerize. The addition of a third molecule allows for the formation of two additional active sites and also permits a large hydrophobic surface from each molecule of AcpS to be buried in the trimer. The mutations Ile5-->Arg, Gln113-->Glu and Gln113-->Arg show that AcpS is inactive when unable to form a trimer. The co-crystal structures of AcpS-CoA and AcpS-ACP allow us to propose a catalytic mechanism for this class of 4'-phosphopantetheinyl transferases.  相似文献   
117.
Recent studies have revealed differences between urban and rural vocalizations of numerous bird species. These differences include frequency shifts, amplitude shifts, altered song speed, and selective meme use. If particular memes sung by urban populations are adapted to the urban soundscape, "urban-typical" calls, memes, or repertoires should be consistently used in multiple urban populations of the same species, regardless of geographic location. We tested whether songs or contact calls of silvereyes (Zosterops lateralis) might be subject to such convergent cultural evolution by comparing syllable repertoires of geographically dispersed urban and rural population pairs throughout southeastern Australia. Despite frequency and tempo differences between urban and rural calls, call repertoires were similar between habitat types. However, certain song syllables were used more frequently by birds from urban than rural populations. Partial redundancy analysis revealed that both geographic location and habitat characteristics were important predictors of syllable repertoire composition. These findings suggest convergent cultural evolution: urban populations modify both song and call syllables from their local repertoire in response to noise.  相似文献   
118.
Recent studies of the phylogeny of several groups of native Hawaiian vascular plants have led to significant insights into the origin and evolution of important elements of the Hawaiian flora. No groups of Hawaiian pteridophytes have been subjected previously to rigorous phylogenetic analysis. We conducted a molecular phylogenetic analysis of the endemic Hawaiian fern genus Adenophorus employing DNA sequence variation from three cpDNA fragments: rbcL, atpbeta, and the trnL-trnF intergenic spacer (IGS). In the phylogenetic analyses we employed maximum parsimony and Bayesian inference. Bayesian phylogenetic inference often provided stronger support for hypothetical relationships than did nonparametric bootstrap analyses. Although phylogenetic analyses of individual DNA fragments resulted in different patterns of relationships among species and varying levels of support for various clades, a combined analysis of all three sets of sequences produced one, strongly supported phylogenetic hypothesis. The primary features of that hypothesis are: (1) Adenophorus is monophyletic; (2) subgenus Oligadenus is paraphyletic; (3) the enigmatic endemic Hawaiian species Grammitis tenella is strongly supported as the sister taxon to Adenophorus; (4) highly divided leaf blades are evolutionarily derived in the group and simple leaves are ancestral; and, (5) the biogeographical origin of the common ancestor of the Adenophorus-G. tenella clade remains unresolved, although a neotropical origin seems most likely.  相似文献   
119.
Chaudhuri M  Parris DS 《Journal of virology》2002,76(20):10270-10281
The DNA polymerase holoenzyme of herpes simplex virus type 1 (HSV-1) is a stable heterodimer consisting of a catalytic subunit (Pol) and a processivity factor (UL42). HSV-1 UL42 differs from most DNA polymerase processivity factors in possessing an inherent ability to bind to double-stranded DNA. It has been proposed that UL42 increases the processivity of Pol by directly tethering it to the primer and template (P/T). To test this hypothesis, we took advantage of the different sensitivities of Pol and Pol/UL42 activities to ionic strength. Although the activity of Pol is inhibited by salt concentrations in excess of 50 mM KCl, the activity of the holoenzyme is relatively refractory to changes in ionic strength from 50 to 125 mM KCl. We used nitrocellulose filter-binding assays and real-time biosensor technology to measure binding affinities and dissociation rate constants of the individual subunits and holoenzyme for a short model P/T as a function of the ionic strength of the buffer. We found that as observed for activity, the binding affinity and dissociation rate constant of the Pol/UL42 holoenzyme for P/T were not altered substantially in high- versus low-ionic-strength buffer. In 50 mM KCl, the apparent affinity with which UL42 bound the P/T did not differ by more than twofold compared to that observed for Pol or Pol/UL42 in the same low-ionic-strength buffer. However, increasing the ionic strength dramatically decreased the affinity of UL42 for P/T, such that it was reduced more than 3 orders of magnitude from that of Pol/UL42 in 125 mM KCl. Real-time binding kinetics revealed that much of the reduced affinity could be attributable to an extremely rapid dissociation of UL42 from the P/T in high-ionic-strength buffer. The resistance of the activity, binding affinity, and stability of the holoenzyme for the model P/T to increases in ionic strength, despite the low apparent affinity and poor stability with which UL42 binds the model P/T in high concentrations of salt, suggests that UL42 does not simply tether the Pol to DNA. Instead, it is likely that conformational alterations induced by interaction of UL42 with Pol allow for high-affinity and high-stability binding of the holoenzyme to the P/T even under high-ionic-strength conditions.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号