首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   3篇
  63篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2006年   3篇
  2004年   2篇
  2003年   3篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
61.
Biosafety is a major challenge for developing for synthetic organisms. An early focus on application and their context could assist with the design of appropriate genetic safeguards. Subject Categories: Synthetic Biology & Biotechnology, S&S: Economics & Business

One of the goals of synthetic biology is the development of robust chassis cells for their application in medicine, agriculture, and the food, chemical and environmental industries. These cells can be streamlined by removing undesirable features and can be augmented with desirable functionalities to design an optimized organism. In a direct analogy with a car chassis, they provide the frame for different modules or “plug‐in” regulatory networks, metabolic pathways, or safety elements. In an effort to ensure a safe microbial chassis upfront, safety measures are implemented as genetic safeguards to limit risks such as unwanted cellular proliferation or horizontal gene transfer. Examples of this technology include complex genetic circuits, sophisticated metabolic dependencies (auxotrophies), and altered genomes (Schmidt & de Lorenzo, 2016; Asin‐Garcia et al, 2020). Much like seat belts or airbags in cars, these built‐in measures increase the safety of the chassis and of any organisms derived from it. Indeed, when it comes to safety, synthetic biology can still learn from a century‐old technology such as cars about the significance of context for the development of biosafety technologies.Every car today has seat belts installed by default. Yet, seat belts were not always a standard component; in fact, they were not even designed for cars to begin with. The original 2‐point belts were first used in aviation and only slowly introduced for motorized vehicles. Only after some redesign, the now‐common 3‐point car seat belts would become the life‐saving equipment that they are today. A proper understanding of the context of their application was therefore one of the crucial factors for their success and wide adoption. Context matters: It provides meaning for and defines what a technological application is best suited for. What was true for seat belts may be also true for biosafety technologies such as genetic safeguards.
… when it comes to safety, synthetic biology can still learn from a century‐old technology such as cars about the significance of context for the development of biosafety technologies.
Society has a much higher awareness of technology’s risks compared to the early days of cars. Society today requires that technological risks are anticipated and assessed before an innovation or its applications are widely deployed. In addition, society increasingly demands that research and innovation take into account societal needs and values. This has led to, among others, the Responsible Research and Innovation (RRI; von Schomberg, 2013) concept that has become prominent in European science policy. In a nutshell, RRI requires that innovative products and processes align with societal needs, expectations, and values in consultation with stakeholders. RRI and similar frameworks suggest that synthetic biology must anticipate and respond not only to risks, but also to societal views that frame its evaluation and risk assessment.  相似文献   
62.
63.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号