首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   581篇
  免费   85篇
  666篇
  2019年   4篇
  2018年   7篇
  2017年   7篇
  2016年   14篇
  2015年   17篇
  2014年   20篇
  2013年   18篇
  2012年   31篇
  2011年   33篇
  2010年   12篇
  2009年   22篇
  2008年   26篇
  2007年   19篇
  2006年   33篇
  2005年   22篇
  2004年   27篇
  2003年   22篇
  2002年   23篇
  2001年   10篇
  2000年   26篇
  1999年   18篇
  1998年   5篇
  1997年   6篇
  1996年   9篇
  1995年   5篇
  1994年   4篇
  1992年   16篇
  1991年   13篇
  1990年   17篇
  1989年   13篇
  1988年   8篇
  1987年   12篇
  1986年   6篇
  1985年   5篇
  1984年   6篇
  1983年   14篇
  1982年   4篇
  1981年   4篇
  1980年   8篇
  1978年   5篇
  1973年   4篇
  1971年   8篇
  1970年   4篇
  1969年   4篇
  1965年   3篇
  1964年   4篇
  1960年   3篇
  1923年   3篇
  1922年   3篇
  1910年   3篇
排序方式: 共有666条查询结果,搜索用时 7 毫秒
81.
Rabies pseudotyped lentiviral vectors have great potential in gene therapy, not least because of their ability to transduce neurons following their distal axonal application. However, very little is known about the molecular processes that underlie their retrograde transport and cell transduction. Using multiple labeling techniques and confocal microscopy, we demonstrated that pseudotyping with rabies virus envelope glycoprotein (RV-G) enabled the axonal retrograde transport of two distinct subtypes of lentiviral vector in motor neuron cultures. Analysis of this process revealed that these vectors trafficked through Rab5-positive endosomes and accumulated within a non-acidic Rab7 compartment. RV-G pseudotyped vectors were co-transported with both the tetanus neurotoxin-binding fragment and the membrane proteins thought to mediate rabies virus endocytosis (neural cell adhesion molecule, nicotinic acetylcholine receptor, and p75 neurotrophin receptor), thus demonstrating that pseudotyping with RV-G targets lentiviral vectors for transport along the same pathway exploited by several toxins and viruses. Using motor neurons cultured in compartmentalized chambers, we demonstrated that axonal retrograde transport of these vectors was rapid and efficient; however, it was not able to transduce the targeted neurons efficiently, suggesting that impairment in processes occurring after arrival of the viral vector in the soma is responsible for the low transduction efficiency seen in vivo, which suggests a novel area for improvement of gene therapy vectors.  相似文献   
82.
Effector functions and proliferation of T helper (Th) cells are influenced by cytokines in the environment. Th1 cells respond to a synergistic effect of interleukin-12 (IL-12) and interleukin-18 (IL-18) to secrete interferon-gamma (IFN-gamma). In contrast, Th2 cells respond to interleukin-4 (IL-4) to secrete IL-4, interleukin-13 (IL-13), interleukin-5 (IL-5), and interleukin-10 (IL-10). The authors were interested in identifying nonpeptide inhibitors of the Th1 response selective for the IL-12/IL-18-mediated secretion of IFN-gamma while leaving the IL-4-mediated Th2 cytokine secretion relatively intact. The authors established a screening protocol using human peripheral blood mononuclear cells (PBMCs) and identified the hydrazino anthranilate compound 1 as a potent inhibitor of IL-12/IL-18-mediated IFN-gamma secretion from CD3(+) cells with an IC(50) around 200 nM. The inhibitor was specific because it had virtually no effect on IL-4-mediated IL-13 release from the same population of cells. Further work established that compound 1 was a potent intracellular iron chelator that inhibited both IL-12/IL-18- and IL-4-mediated T cell proliferation. Iron chelation affects multiple cellular pathways in T cells. Thus, the IL-12/IL-18-mediated proliferation and IFN-gamma secretion are very sensitive to intracellular iron concentration. However, the IL-4-mediated IL-13 secretion does not correlate with proliferation and is partially resistant to potent iron chelation.  相似文献   
83.
Parkinson GN  Ghosh R  Neidle S 《Biochemistry》2007,46(9):2390-2397
Maintenance of telomere integrity is a hallmark of human cancer, and the single-stranded 3' ends of telomeric DNA are targets for small-molecule anticancer therapies. We report here the crystal structure of a bimolecular human telomeric quadruplex, of the sequence d(TAGGGTTAGGG), in a complex with the quadruplex-binding ligand 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) to a resolution of 2.09 A. The DNA quadruplex topology is parallel-stranded with external double-chain-reversal propeller loops, consistent with previous structural determinations. The porphyrin molecules bind by stacking onto the TTA nucleotides, either as part of the external loop structure or at the 5' region of the stacked quadruplex. This involves stacked on hydrogen-bonded base pairs, formed from those nucleotides not involved in the formation of G-tetrads, and there are thus no direct ligand interactions with G-tetrads. This is in accord with the relative nonselectivity by TMPyP4 for quadruplex DNAs compared to duplex DNA. Porphyrin binding is achieved by remodeling of loops compared to the ligand-free structures. Implications for the design of quadruplex-binding ligands are discussed, together with a model for the formation of anaphase bridges, which are observed following cellular treatment with TMPyP4.  相似文献   
84.
Carboxylesterases (CE) are ubiquitous enzymes found in both human and animal tissues and are responsible for the metabolism of xenobiotics. This includes numerous natural products, as well as a many clinically used drugs. Hence, the activity of these agents is likely dependent upon the levels and location of CE expression. We have recently identified benzil is a potent inhibitor of mammalian CEs, and in this study, we have assessed the ability of analogues of this compound to inhibit these enzymes. Three different classes of molecules were assayed: one containing different atoms vicinal to the carbonyl carbon atom and the benzene ring [PhXC(O)C(O)XPh, where X=CH?, CHBr, N, S, or O]; a second containing a panel of alkyl 1,2-diones demonstrating increasing alkyl chain length; and a third consisting of a series of 1-phenyl-2-alkyl-1,2-diones. In general, with the former series of molecules, heteroatoms resulted in either loss of inhibitory potency (when X=N), or conversion of the compounds into substrates for the enzymes (when X=S or O). However, the inclusion of a brominated methylene atom resulted in potent CE inhibition. Subsequent analysis with the alkyl diones [RC(O)C(O)R, where R ranged from CH? to C?H??] and 1-phenyl-2-alkyl-1,2-diones [PhC(O)C(O)R where R ranged from CH? to C?H??], demonstrated that the potency of enzyme inhibition directly correlated with the hydrophobicity (clogP) of the molecules. We conclude from these studies that that the inhibitory power of these 1,2-dione derivatives depends primarily upon the hydrophobicity of the R group, but also on the electrophilicity of the carbonyl group.  相似文献   
85.
86.
87.
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号