首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21331篇
  免费   1496篇
  国内免费   11篇
  22838篇
  2024年   27篇
  2023年   66篇
  2022年   242篇
  2021年   413篇
  2020年   247篇
  2019年   310篇
  2018年   531篇
  2017年   393篇
  2016年   680篇
  2015年   1126篇
  2014年   1223篇
  2013年   1393篇
  2012年   1825篇
  2011年   1706篇
  2010年   1098篇
  2009年   912篇
  2008年   1344篇
  2007年   1184篇
  2006年   1052篇
  2005年   971篇
  2004年   958篇
  2003年   777篇
  2002年   784篇
  2001年   627篇
  2000年   632篇
  1999年   422篇
  1998年   166篇
  1997年   129篇
  1996年   119篇
  1995年   87篇
  1994年   82篇
  1993年   69篇
  1992年   157篇
  1991年   125篇
  1990年   88篇
  1989年   103篇
  1988年   70篇
  1987年   65篇
  1986年   69篇
  1985年   53篇
  1984年   47篇
  1983年   37篇
  1982年   27篇
  1981年   24篇
  1978年   28篇
  1976年   32篇
  1975年   29篇
  1973年   33篇
  1971年   23篇
  1969年   24篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
221.
222.
In mammalian cells, DNA replication occurs at discrete nuclear sites termed replication factories. Here we demonstrate that DNA ligase I and the large subunit of replication factor C (RF-C p140) have a homologous sequence of approximately 20 amino acids at their N-termini that functions as a replication factory targeting sequence (RFTS). This motif consists of two boxes: box 1 contains the sequence IxxFF whereas box 2 is rich in positively charged residues. N-terminal fragments of DNA ligase I and the RF-C large subunit that contain the RFTS both interact with proliferating cell nuclear antigen (PCNA) in vitro. Moreover, the RFTS of DNA ligase I and of the RF-C large subunit is necessary and sufficient for the interaction with PCNA. Both subnuclear targeting and PCNA binding by the DNA ligase I RFTS are abolished by replacement of the adjacent phenylalanine residues within box 1. Since sequences similar to the RFTS/PCNA-binding motif have been identified in other DNA replication enzymes and in p21(CIP1/WAF1), we propose that, in addition to functioning as a DNA polymerase processivity factor, PCNA plays a central role in the recruitment and stable association of DNA replication proteins at replication factories.  相似文献   
223.
125I-Labeled recombinant human interleukin-3 (IL-3) was used to study the characteristics and distribution of receptors for IL-3 on human cells. Receptors were found on primary monocytes, on some strains of KG-1 cells, and on pre-B cell lines. Binding was rapid at 37 degrees C, while requiring several hours to reach equilibrium at 4 degrees C. Equilibrium binding studies indicated that IL-3 bound to a single class of high affinity receptor (less than 500 receptors/cell) with a Ka of approximately 1 x 10(10) M-1. Inhibition studies revealed that human granulocyte/macrophage colony stimulating factor partially inhibited the binding of 125I-IL-3 to human monocytes but not JM-1 cells. Additional analysis showed that on KG-1 cells, both IL-3 and GM-CSF partially competed specific binding of heterologous radiolabeled ligand, with approximately equivalent capacities. This competition occurred at both 37 and 4 degrees C. These results suggest heterogeneity in the binding sites for IL-3 and GM-CSF in which a subset of receptors binds only IL-3, a subset only GM-CSF, and another subset can bind both, all with high affinity. Additional heterogeneity was suggested by equilibrium binding of 125I-IL-3 to KG-1 cells which revealed a biphasic Scatchard plot containing a low affinity component not observed on monocytes and JM-1 cells.  相似文献   
224.
Streptomyces setonii (ATCC 39116) degrades various single aromatic compounds such as phenol or benzoate via an ortho-cleavage pathway using catechol 1,2-dioxygenase (C12O). A PCR using degenerate primers based on the conserved regions of known C12O-encoding genes amplified a 0.45-kbp DNA fragment from S. setonii total DNA. A Southern hybridization analysis and size-selected DNA library screening using the 0.45-kbp PCR product as a probe led to the isolation of a 6.4-kbp S. setonii DNA fragment, from which the C12O-encoding genetic locus was found to be located within a 1.4-kbp DNA fragment. A complete nucleotide sequencing analysis of the 1.4-kbp DNA fragment revealed a 0.84-kbp open reading frame, which showed a strong overall amino acid similarity to the known high-G+C Gram-positive (but significantly less to the Gram-negative) bacterial mesophilic C12Os. The heterologous expression of the cloned 1.4-kbp DNA fragment in Escherichia coli demonstrated that this C12O possessed a thermophilic activity within a broad temperature range (up to 65 degrees C) and showed a higher activity against 3-methylcatechol than catechol or 4-methylcatechol, but no activity against protocatechuate.  相似文献   
225.
The major nuclear pore protein p62 is modified by O-linked N-acetylglucosamine and functions in nuclear transport. We have cloned, sequenced, and expressed the full-length rat p62 cDNA. The rat p62 mRNA is 2,941 nucleotides long and encodes a protein of 525 amino acids containing 30% serine and threonine residues. The amino acid sequence near the amino-terminus contains unique tetrapeptide repeats while the carboxy-terminus consists of a series of predicted alpha-helical regions with hydrophobic heptad repeats. Heterologous expression of rat p62 in African Green Monkey Kidney COS-1 cells and CV-1 cells was detected using a species-specific antipeptide serum. When transiently expressed in COS-1 cells, rat p62 binds wheat germ agglutinin and concentrates at the spindle poles during mitosis. In CV-1 cells cotransfected with rat p62 cDNA and SV40 viral DNA, rat p62 associates with the nuclear membrane without interfering with the nuclear transport of SV40 large T antigen. The ability to express p62 in tissue culture cells will facilitate analysis of the role of this pore protein in nuclear transport.  相似文献   
226.
Fusobacterium nucleatum, one of the major causative bacteria of periodontitis, is classified into five subspecies (nucleatum, polymorphum, vincentii, animalis, and fusiforme) on the basis of the several phenotypic characteristics and DNA homology. This is the first report of the draft genome sequence of F. nucleatum subsp. fusiforme ATCC 51190(T).  相似文献   
227.
ABSTRACT: BACKGROUND: Historically, acid pretreatment technology for the production of bio-ethanol from corn stover has required severe conditions to overcome biomass recalcitrance. However, the high usage of acid and steam at severe pretreatment conditions hinders the economic feasibility of the ethanol production from biomass. In addition, the amount of acetate and furfural produced during harsh pretreatment is in the range that strongly inhibits cell growth and impedes ethanol fermentation. The current work addresses these issues through pretreatment with lower acid concentrations and temperatures incorporated with deacetylation and mechanical refining. RESULTS: The results showed that deacetylation with 0.1 M NaOH before acid pretreatment improved the monomeric xylose yield in pretreatment by up to 20 % while keeping the furfural yield under 2 %. Deacetylation also improved the glucose yield by 10 % and the xylose yield by 20 % during low solids enzymatic hydrolysis. Mechanical refining using a PFI mill further improved sugar yields during both low- and high-solids enzymatic hydrolysis. Mechanical refining also allowed enzyme loadings to be reduced while maintaining high yields. Deacetylation and mechanical refining are shown to assist in achieving 90 % cellulose yield in high-solids (20 %) enzymatic hydrolysis. When fermentations were performed under pH control to evaluate the effect of deacetylation and mechanical refining on the ethanol yields, glucose and xylose utilizations over 90 % and ethanol yields over 90 % were achieved. Overall ethanol yields were calculated based on experimental results for the base case and modified cases. One modified case that integrated deacetylation, mechanical refining, and washing was estimated to produce 88 gallons of ethanol per ton of biomass. CONCLUSION: The current work developed a novel bio-ethanol process that features pretreatment with lower acid concentrations and temperatures incorporated with deacetylation and mechanical refining. The new process shows improved overall ethanol yields compared to traditional dilute acid pretreatment. The experimental results from this work support the techno-economic analysis and calculation of Minimum Ethanol Selling Price (MESP) detailed in our companion paper.  相似文献   
228.
A new antimicrobial peptide, cryptonin, was isolated and characterized from the adult Korean blackish cicada, Cryptotympana dubia. It consists of 24 amino acid residues and has a molecular weight of 2,704 Da on mass spectroscopy. The predicted alpha-helical structure analysis and increased helix percent in 40% trifloroethanol of cryptonin suggests that it belongs to the typical linear alpha-helix forming peptide. Binding of the biotin-labeled cryptonin at the surface of E. coli cells and increased influx of propidium iodide in E. coli after cryptonin treatment indicates that it kills microbial cells by binding bacterial cell surfaces and disrupting the cell permeability. Cryptonin showed strong antibacterial (MIC 1.56-25 microg/ml) and antifungal (MIC 3.12-50 microg/ml) activities against tested bacteria and fungi including two antibiotic-resistant bacterial strains; methicilin-resistant S. aureus and vancomycin-resistant Enterococci (MIC 25 microg/ml, each).  相似文献   
229.
Escherichia coli strain 397c carries a temperature-sensitive mutation, rpoC397, that removes the last 50 amino acids of the RNA polymerase beta' subunit and is nonpermissive for plating of bacteriophage P2. P2 gor mutants productively infect 397c and define a new gene, lysC, encoded by a reading frame that extensively overlaps the P2 lysis accessory gene, lysB. The unusual location of lysC with respect to lysB is reminiscent of the Rz/Rz1 lysis gene pair of phage lambda. Indeed, coexpression of lysB and lysC complemented the growth defect of lambda Rz/Rz1 null mutants, indicating that the LysB/C pair is similar to Rz/Rz1 in both gene arrangement and function. Cells carrying the rpoC397 mutation exhibited an early onset of P2-induced lysis, which was suppressed by the gor mutation in lysC. We propose that changes in host gene expression resulting from the rpoC397 mutation result in changes in the composition of the bacterial cell wall, making the cell more susceptible to P2-mediated lysis and preventing accumulation of progeny phage sufficient for plaque formation.  相似文献   
230.
The hydrolysis which converts polysaccharides to the fermentable sugars for yeast’s lingocellulosic ethanol production also generates byproducts which inhibit the ethanol production. To investigate the extent to which inhibitory compounds affect yeast’s growth and ethanol production, fermentations by Saccharomyces cerevisiae K35 were investigated in various concentrations of acetic acid, furfural, 5-hydroxymethylfurfural (5-HMF), syringaldehyde, and coumaric acid. Fermentation in hydrolysates from yellow poplar and waste wood was also studied. After 24 h, S. cerevisiae K35 produced close to theoretically predicted ethanol yields in all the concentrations of acetic acid tested (1 ∼ 10 g/L). Both furans and phenolics inhibited cell growth and ethanol production. Ethanol yield, however, was unaffected, even at high concentrations, except in the cases of 5 g/L of syringaldehyde and coumaric acid. Although hydrolysates contain various toxic compounds, in their presence, S. Cerevisiae K35 consumed close to all the available glucose and yielded more ethanol than theoretically predicted. S. Cerevisiae K35 was demonstrated to have high tolerance to inhibitory compounds and not to need any detoxification for ethanol production from hydrolysates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号