首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   10篇
  235篇
  2024年   4篇
  2023年   4篇
  2022年   20篇
  2021年   12篇
  2020年   16篇
  2019年   17篇
  2018年   12篇
  2017年   10篇
  2016年   10篇
  2015年   14篇
  2014年   16篇
  2013年   19篇
  2012年   19篇
  2011年   17篇
  2010年   10篇
  2009年   9篇
  2008年   9篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
排序方式: 共有235条查询结果,搜索用时 0 毫秒
101.

Introduction

Microsomal prostaglandin E2 synthase-1 (mPGES-1) is an inducible enzyme that acts downstream of cyclooxygenase (COX) to specifically catalyze the conversion of prostaglandin (PG) H2 to PGE2. mPGES-1 plays a key role in inflammation, pain and arthritis; however, the role of mPGES-1 in fibrogenesis is largely unknown. Herein, we examine the role of mPGES-1 in a mouse model of skin scleroderma using mice deficient in mPGES-1.

Methods

Wild type (WT) and mPGES-1 null mice were subjected to the bleomycin model of cutaneous skin scleroderma. mPGES-1 expressions in scleroderma fibroblasts and in fibroblasts derived from bleomycin-exposed mice were assessed by Western blot analysis. Degree of fibrosis, dermal thickness, inflammation, collagen content and the number of α-smooth muscle actin (α-SMA)-positive cells were determined by histological analyses. The quantity of the collagen-specific amino acid hydroxyproline was also measured.

Results

Compared to normal skin fibroblasts, mPGES-1 protein expression was elevated in systemic sclerosis (SSc) fibroblasts and in bleomycin-exposed mice. Compared to WT mice, mPGES-1-null mice were resistant to bleomycin-induced inflammation, cutaneous thickening, collagen production and myofibroblast formation.

Conclusions

mPGES-1 expression is required for bleomycin-induced skin fibrogenesis. Inhibition of mPGES-1 may be a viable method to alleviate the development of cutaneous sclerosis and is a potential therapeutic target to control the onset of fibrogenesis.  相似文献   
102.
Neutrophil Gelatinase-Associated Lipocalin (NGAL/Lcn2), a member of the lipocalin family, has a variety of functions. There are extensive studies examining the expression of NGAL under harmful conditions. However, its precise function remains poorly understood. Heme Oxygenase 1 (HO-1) is an enzyme with well-established cytoprotective effects. Previous work showed that NGAL induces expression of HO-1. Interestingly, the same stimuli induced the expression of both NGAL and HO-1. The current study was designed to (1) determine whether NGAL exerts its cytoprotective effect through HO-1 and (2) compare NGAL and HO-1 with each other in terms of their protective role against oxidative stress. The current data indicate that NGAL exerts its cytoprotective effect independent of HO-1 and protects cells against oxidative stress more efficiently than HO-1. The data also strongly suggest that induction of NGAL under harmful conditions is a compensatory response to ameliorate oxidative stress-mediated toxicity. These findings may suggest new applications of NGAL, particularly when oxidative stress is a major factor.  相似文献   
103.
The motor symptoms of Parkinson’s disease (PD) are caused by degeneration of dopamine (DA) neurons in the substantia nigra pars compacta (SNc) of midbrain. Given the fact that current treatment options are mostly symptomatic and based on increasing DA level in the nigrostriatal system, it is generally believed the most effective and long-lasting treatment for PD motor symptoms will be replacing SNc DA cells, either by endogenous repair (i.e. neurogenesis) or cell transplantation. While cell transplantation is hindered by failure of acquisition and maintenance of the DA phenotype by transplanted cells, hope rests upon non-invasive cell replacement therapy (CRT) with endogenous neural stem cells, which have the potential to give rise to new neurons including DA neurons. Understanding underlying mechanisms and signalling pathways of neurogenesis in the adult brain could shed light on obstacles to achieve effective CRTs and better treatments for PD. This paper first reviews different therapeutic strategies in context of PD along with their advantages and disadvantages followed by an extensive review of adult neurogenesis.  相似文献   
104.
Systemic lupus erythematosus (SLE) is known as an autoimmune disorder that is characterized by the breakdown of self-tolerance, resulting in disease onset and progression. Macrophages have been implicated as a factor in the development of SLE through faulty phagocytosis of dead cells or an imbalanced M1/M2 ratio. The study aimed to investigate the immunomodulatory effects of Lactobacillus delbrueckii and Lactobacillus rhamnosus on M1 and M2 macrophages in new case lupus patients. For this purpose, blood monocytes were collected from lupus patients and healthy people and were cultured for 5 days to produce macrophages. For 48 h, the macrophages were then cocultured with either probiotics or lipopolysaccharides (LPS). Flow cytometry and real-time polymerase chain reaction were then used to analyze the expression of cluster of differentiation (CD) 14, CD80, and human leukocyte antigen – DR (HLADR) markers, as well as cytokine expression (interleukin [IL]1-β, IL-12, tumor necrosis factor α [TNF-α], IL-10, and transforming growth factor beta [TGF-β]). The results indicated three distinct macrophage populations, M0, M1, and M2. In both control and patient-derived macrophage-derived monocytes (MDMs), the probiotic groups showed a decrease in CD14, CD80, and HLADR expression compared to the LPS group. This decrease was particularly evident in M0 and M2 macrophages from lupus patients and M1 macrophages from healthy subjects. In addition, the probiotic groups showed increased levels of IL-10 and TGF-β and decreased levels of IL-12, IL1-β, and TNF-α in MDMs from both healthy and lupus subjects compared to the LPS groups. Although there was a higher expression of pro-inflammatory cytokines in lupus patients, there was a higher expression of anti-inflammatory cytokines in healthy subjects. In general, L. delbrueckii and L. rhamnosus could induce anti-inflammatory effects on MDMs from both healthy and lupus subjects.  相似文献   
105.
Nanoparticles comprising Alginate/Chitosan polymers were prepared by pregel preparation method through drop wise addition of various concentrations of CaCl2 to a defined concentration of Sodium Alginate. Then, Chitosan/Antisense solution with a certain N/P ratio was added to the pregel to make the nanoparticles. The effect of such parameters as polymer ratio, CaCl2/Alginate ratio and N/P ratio on the particle size distribution and loading efficacy was studied. The optimum conditions were 1:1 (w/w) Alginate to Chitosan ratio, 0.2% CaCl2/Alginate ratio and N/P ratio of 5 at pH 5.3. The resulting nanoparticles had a loading efficacy of 95.6% and average size of 194 nm as confirmed by PCS method and SEM images showed spherical and smooth particles. The zeta potential of optimized nanoparticles prepared by this method was about +30 mV which could result in good stability of nanoparticles during manipulation and storage.  相似文献   
106.
Exposure of cells to chemotherapeutic drug doxorubicin, a DNA-damaging agent, induces an increase in the levels and activity of the wild-type p53 protein. Less well appreciated was the effect of cAMP levels on posttranslational modifications of p53 in response to doxorubicin. Here we show that elevation of cAMP in pre-B acute lymphoblastic leukemia NALM-6 cells significantly attenuated phosphorylation state of p53 at Ser6, Ser9, Ser15, Ser20, Ser37, Ser46 and Ser392 upon exposure to doxorubicin. Increased cAMP levels also shifted the ratio of the death promoter to death repressor genes via alteration of Bcl-2 and Bax proteins expression. In conclusion, our results suggest that activation of cAMP-signaling system may repress p53-dependent apoptosis in malignant cells exposed to doxorubicin.  相似文献   
107.
Environmental temperature variations are the most common stresses experienced by a wide range of organisms. Lipocalin 2 (Lcn2/NGAL) is expressed in various normal and pathologic conditions. However, its precise functions have not been fully determined. Here we report the induction of Lcn2 by thermal stresses in vivo, and its role following exposure to cold and heat stresses in vitro. Induction of Lcn2 in liver, heart and kidney was detected by RT-PCR, Western blot and immunohistochemistry following exposure of mice to heat and cold stresses. When CHO and HEK293T cells overexpressing NGAL were exposed to cold stress, cell proliferation was higher compared to controls. Down-regulatrion of NGAL by siRNA in A549 cells resulted in less proliferation when exposed to cold stress compared to control cells. The number of apoptotic cells and expression of pro-apoptotic proteins were lower in the NGAL overexpressing CHO and HEK293T cells, but were higher in the siRNA-transfected A549 cells compared to controls, indicating that NGAL protects cells against cold stress. Following exposure of the cells to heat stress, ectopic expression of NGAL protected cells while addition of exogenous recombinant NGAL to the cell culture medium exacerbated the toxicity of heat stress specially when there was low or no endogenous expression of NGAL. It had a dual effect on apoptosis following heat stress. NGAL also increased the expression of HO-1. Lcn2/NGAL may have the potential to improve cell proliferation and preservation particularly to prevent cold ischemia injury of transplanted organs or for treatment of some cancers by hyperthermia.  相似文献   
108.
Neuroimaging techniques represent powerful tools to assess disease-specific cellular, biochemical and molecular processes non-invasively in vivo. Besides providing precise anatomical localisation and quantification, the most exciting advantage of non-invasive imaging techniques is the opportunity to investigate the spatial and temporal dynamics of disease-specific functional and molecular events longitudinally in intact living organisms, so called molecular imaging (MI). Combining neuroimaging technologies with in vivo models of neurological disorders provides unique opportunities to understand the aetiology and pathophysiology of human neurological disorders. In this way, neuroimaging in mouse models of neurological disorders not only can be used for phenotyping specific diseases and monitoring disease progression but also plays an essential role in the development and evaluation of disease-specific treatment approaches. In this way MI is a key technology in translational research, helping to design improved disease models as well as experimental treatment protocols that may afterwards be implemented into clinical routine. The most widely used imaging modalities in animal models to assess in vivo anatomical, functional and molecular events are positron emission tomography (PET), magnetic resonance imaging (MRI) and optical imaging (OI). Here, we review the application of neuroimaging in mouse models of neurodegeneration (Parkinson's disease, PD, and Alzheimer's disease, AD) and brain cancer (glioma).  相似文献   
109.

Microalgae dewatering is a major bottleneck for biomass production in a large-scale microalgal production system which accounts for 20–60% of production cost. In this study, three dewatering systems of electrocoagulation, flocculation, and pH-induced flocculation were evaluated for microalgal consortium grown in anaerobically digested abattoir effluent at pH 6.5 and 9.5. At the shortest time (15 min) and the highest current density (0.08 A cm?2), the highest microalgae recoveries of 78 and 84% were obtained with the corresponding power consumptions of 1.25 and 1.07 kWh kg?1 for cultures at pH 6.5 and 9.5. For microalgae suspension at pH 6.5, the highest biomass recovery of 77% was obtained when 100 mg L?1 of FeCl3·6H2O (after 15 min) or 100 mg L?1 of Al2(SO4)3·18H2O (after 30 min) was added. However, microalgal recoveries significantly increased when FeCl3·6H2O or Al2(SO4)3·18H2O was used with the culture at pH 9.5. pH-Induced experiments showed that cultures adjusted at pH 10.5 had 36% higher biomass recovery compared to that in cultures at pH 8.5 after 2 h. The results of this study showed that cultures at higher pH (9.5) had a better microalgae recovery in all dewatering systems than cultures at lower pH (6.5).

  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号