首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   223篇
  免费   10篇
  2024年   3篇
  2023年   4篇
  2022年   19篇
  2021年   12篇
  2020年   16篇
  2019年   17篇
  2018年   12篇
  2017年   10篇
  2016年   10篇
  2015年   14篇
  2014年   16篇
  2013年   19篇
  2012年   19篇
  2011年   17篇
  2010年   10篇
  2009年   9篇
  2008年   9篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
排序方式: 共有233条查询结果,搜索用时 171 毫秒
21.
22.
Swadźba E  Rupik W 《Protoplasma》2012,249(1):31-42
The couplons of the cardiomyocyte form nanospaces within the cell that place the L-type calcium channel (Cav1.2), situated on the plasmalemma, in opposition to the type 2 ryanodine receptor (RyR2), situated on the sarcoplasmic reticulum. These two molecules, which form the basis of excitation–contraction coupling, are separated by a very limited space, which allows a few Ca2+ ions passing through Cav1.2 to activate the RyR2 at concentration levels that would be deleterious to the whole cell. The limited space also allows Ca2+ inactivation of Cav1.2. We have found that not all couplons are the same and that their properties are likely determined by their molecular partners which, in turn, determine their excitability. In particular, there are a class of couplons that lie outside the RyR2-Cav1.2 dyad; in this case, the RyR2 is close to caveolin-3 rather than Cav1.2. These extra-dyadic couplons are probably controlled by the multitude of molecules associated with caveolin-3 and may modulate contractile force under situations such as stress. It has long been assumed that like the skeletal muscle, the RyR2 in the couplon are arranged in a structured array with the RyR2 interacting with each other via domain 6 of the RyR2 molecule. This arrangement was thought to provide local control of RyR2 excitability. Using 3D electron tomography of the couplon, we show that the RyR2 in the couplon do not form an ordered pattern, but are scattered throughout it. Relatively few are in a checkerboard pattern—many RyR2 sit edge-to-edge, a configuration which might preclude their controlling each other's excitability. The discovery of this structure makes many models of cardiac couplon function moot and is a current avenue of further research  相似文献   
23.
The interaction between the synaptic adhesion molecules neuroligins and neurexins is essential for connecting the pre- and post-synaptic neurons, modulating neuronal signal transmission, and facilitating neuronal axogenesis. Here, we describe the simultaneous expression of the extracellular domain of rat neuroligin-1 (NL1) proteins along with the enhanced green fluorescent protein (EGFP) using the bi-cistronic baculovirus expression vector system (bi-BEVS). Recombinant rat NL1 protein, fused with signal sequence derived from human Azurocidin gene (AzSP), was secreted into the culture medium and the optimum harvest time for NL1 protein before the lysis of infected cells was determined through the release of cytosolic EGFP. The NL1 protein (0.129±0.013 mg/8×10(7) High Five cells; ~96% purity by metal affinity chromatography) was obtained from the supernatant of the recombinant virus-infected insect cells. A novel chip was employed to address whether the recombinant NL1 is functional in axogenesis. The purified rat NL1 promoted and enhanced the growth rate (137.07±9.74 μm/day) of the axon on NL1/PLL (poly-L-lysine)-coated fine lines on the chip compared to those lines that were coated with PLL alone (105.53±4.53 μm/day). These results were confirmed by fluorescence immunocytochemistry and demonstrated that the recombinant protein can be purified by a one-step process using IMAC combined with monitoring of cell lysis by bi-BEVS. This technique along with our novel chip offers a simple, cost-effective and useful platform for understanding the roles of NL1 protein in neuronal regeneration and synaptic formation studies.  相似文献   
24.
25.
26.
Interleukin 35 (IL-35), a cytokine mainly produced by regulatory T cells (Treg cells), is composed of an Epstein-Barr virus–induced gene 3 β-chain and an IL-12 p35 α-chain. IL-35 causes tumorigenicity in cancer, protects cancer cells against apoptosis, and facilitates cancer progression. However, a few reports have referred to its contradictory roles in cancer prevention. Therefore, the exact purpose of this cytokine in cancer development has become a fundamental question that needs to be answered. In this review, we explain the structure of IL-35 and its receptors and their different signaling pathways. Finally, the function of IL-35 in some cancers and the possible application of this cytokine in approaches for cancer therapy have been discussed.  相似文献   
27.
Plant seed oil‐based liquid transportation fuels (i.e., biodiesel and green diesel) have tremendous potential as environmentally, economically and technologically feasible alternatives to petroleum‐derived fuels. Due to their nutritional and industrial importance, one of the major objectives is to increase the seed yield and oil production of oilseed crops via biotechnological approaches. Camelina sativa, an emerging oilseed crop, has been proposed as an ideal crop for biodiesel and bioproduct applications. Further increase in seed oil yield by increasing the flux of carbon from increased photosynthesis into triacylglycerol (TAG) synthesis will make this crop more profitable. To increase the oil yield, we engineered Camelina by co‐expressing the Arabidopsis thaliana (L.) Heynh. diacylglycerol acyltransferase1 (DGAT1) and a yeast cytosolic glycerol‐3‐phosphate dehydrogenase (GPD1) genes under the control of seed‐specific promoters. Plants co‐expressing DGAT1 and GPD1 exhibited up to 13% higher seed oil content and up to 52% increase in seed mass compared to wild‐type plants. Further, DGAT1‐ and GDP1‐co‐expressing lines showed significantly higher seed and oil yields on a dry weight basis than the wild‐type controls or plants expressing DGAT1 and GPD1 alone. The oil harvest index (g oil per g total dry matter) for DGTA1‐ and GPD1‐co‐expressing lines was almost twofold higher as compared to wild type and the lines expressing DGAT1 and GPD1 alone. Therefore, combining the overexpression of TAG biosynthetic genes, DGAT1 and GPD1, appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, and thereby further increase the oil yield.  相似文献   
28.
29.
30.
Type 1 copper (T1Cu) proteins are electron transfer (ET) proteins involved in many important biological processes. While the effects of changing primary and secondary coordination spheres in the T1Cu ET function have been extensively studied, few report has explored the effect of the overall protein structural perturbation on active site configuration or reduction potential of the protein, even though the protein scaffold has been proposed to play a critical role in enforcing the entatic or “rack‐induced” state for ET functions. We herein report circular permutation of azurin by linking the N‐ and C‐termini and creating new termini in the loops between 1st and 2nd β strands or between 3rd and 4th β strands. Characterization by electronic absorption, electron paramagnetic spectroscopies, as well as crystallography and cyclic voltammetry revealed that, while the overall structure and the primary coordination sphere of the circular permutated azurins remain the same as those of native azurin, their reduction potentials increased by 18 and 124 mV over that of WTAz. Such increases in reduction potentials can be attributed to subtle differences in the hydrogen‐bonding network in secondary coordination sphere around the T1Cu center.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号