首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2309篇
  免费   227篇
  2022年   27篇
  2021年   32篇
  2020年   30篇
  2019年   14篇
  2018年   38篇
  2017年   36篇
  2016年   41篇
  2015年   90篇
  2014年   98篇
  2013年   95篇
  2012年   131篇
  2011年   126篇
  2010年   90篇
  2009年   77篇
  2008年   119篇
  2007年   118篇
  2006年   91篇
  2005年   79篇
  2004年   74篇
  2003年   78篇
  2002年   73篇
  2001年   78篇
  2000年   74篇
  1999年   60篇
  1998年   34篇
  1997年   27篇
  1996年   46篇
  1995年   31篇
  1994年   24篇
  1993年   19篇
  1992年   34篇
  1991年   46篇
  1990年   35篇
  1989年   37篇
  1988年   24篇
  1987年   33篇
  1986年   24篇
  1985年   27篇
  1984年   17篇
  1983年   16篇
  1982年   18篇
  1979年   14篇
  1978年   18篇
  1977年   14篇
  1975年   16篇
  1974年   25篇
  1973年   21篇
  1971年   15篇
  1969年   13篇
  1967年   13篇
排序方式: 共有2536条查询结果,搜索用时 15 毫秒
121.
The mechanical properties of living cells are essential for many processes. They are defined by the cytoskeleton, a composite network of protein fibers. Thus, the precise control of its architecture is of paramount importance. Our knowledge about the molecular and physical mechanisms defining the network structure remains scarce, especially for the intermediate filament cytoskeleton. Here, we investigate the effect of small heat shock proteins on the keratin 8/18 intermediate filament cytoskeleton using a well-controlled model system of reconstituted keratin networks. We demonstrate that Hsp27 severely alters the structure of such networks by changing their assembly dynamics. Furthermore, the C-terminal tail domain of keratin 8 is shown to be essential for this effect. Combining results from fluorescence and electron microscopy with data from analytical ultracentrifugation reveals the crucial role of kinetic trapping in keratin network formation.  相似文献   
122.
123.
124.
Abstract

LiCl (195 μg/g body weight and day) reduces water uptake in Syrian hamsters by 40%. Sleep duration is increased from 50% per day to 60% per day. Other behavioural items are hardly influenced. Shortening and lengthening of the circadian period was induced by Li+ in individual hamsters, but the mean period of the population was not changed. The upper limit of entrainment is increased by Li+.  相似文献   
125.

Background

Werner syndrome (WS) is an autosomal recessive genetic instability and progeroid (‘premature aging’) syndrome which is associated with an elevated risk of cancer.

Objectives

Our study objectives were to characterize the spectrum of neoplasia in WS using a well-documented study population, and to estimate the type-specific risk of neoplasia in WS relative to the general population.

Methods

We obtained case reports of neoplasms in WS patients through examining previous case series and reviews of WS, as well as through database searching in PubMed, Google Scholar, and J-EAST, a search engine for articles from Japan. We defined the spectrum (types and sites) of neoplasia in WS using all case reports, and were able to determine neoplasm type-specific risk in Japan WS patients by calculating standardized incidence and proportionate incidence ratios (SIR and SPIR, respectively) relative to Osaka Japan prefecture incidence rates.

Results

We used a newly assembled study population of 189 WS patients with 248 neoplasms to define the spectrum of neoplasia in WS. The most frequent neoplasms in WS patients, representing 2/3 of all reports, were thyroid neoplasms, malignant melanoma, meningioma, soft tissue sarcomas, leukemia and pre-leukemic conditions of the bone marrow, and primary bone neoplasms. Cancer risk defined by SIRs was significantly elevated in Japan-resident WS patients for the six most frequent neoplasms except leukemia, ranging from 53.5-fold for melanoma of the skin (95% CI: 24.5, 101.6) to 8.9 (95% CI: 4.9, 15.0) for thyroid neoplasms. Cancer risk as defined by SPIR was also significantly elevated for the most common malignancies except leukemia.

Conclusions

WS confers a strong predisposition to several specific types of neoplasia. These results serve as a guide for WS clinical care, and for additional analyses to define the mechanistic basis for cancer in WS and the general population.  相似文献   
126.
Red blood cells (RBCs) are among the most intensively studied cells in natural history, elucidating numerous principles and ground-breaking knowledge in cell biology. Morphologically, RBCs are largely homogeneous, and most of the functional studies have been performed on large populations of cells, masking putative cellular variations. We studied human and mouse RBCs by live-cell video imaging, which allowed single cells to be followed over time. In particular we analysed functional responses to hormonal stimulation with lysophosphatidic acid (LPA), a signalling molecule occurring in blood plasma, with the Ca2+ sensor Fluo-4. Additionally, we developed an approach for analysing the Ca2+ responses of RBCs that allowed the quantitative characterization of single-cell signals. In RBCs, the LPA-induced Ca2+ influx showed substantial diversity in both kinetics and amplitude. Also the age-classification was determined for each particular RBC and consecutively analysed. While reticulocytes lack a Ca2+ response to LPA stimulation, old RBCs approaching clearance generated robust LPA-induced signals, which still displayed broad heterogeneity. Observing phospatidylserine exposure as an effector mechanism of intracellular Ca2+ revealed an even increased heterogeneity of RBC responses. The functional diversity of RBCs needs to be taken into account in future studies, which will increasingly require single-cell analysis approaches. The identified heterogeneity in RBC responses is important for the basic understanding of RBC signalling and their contribution to numerous diseases, especially with respect to Ca2+ influx and the associated pro-thrombotic activity.  相似文献   
127.
Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I.  相似文献   
128.
129.
The postnatal environment, including factors such as weaning and acquisition of the gut microbiota, has been causally linked to the development of later immunological diseases such as allergy and autoimmunity, and has also been associated with a predisposition to metabolic disorders. We show that the very early-life environment influences the development of both the gut microbiota and host metabolic phenotype in a porcine model of human infants. Farm piglets were nursed by their mothers for 1 day, before removal to highly controlled, individual isolators where they received formula milk until weaning at 21 days. The experiment was repeated, to create two batches, which differed only in minor environmental fluctuations during the first day. At day 1 after birth, metabolic profiling of serum by 1H nuclear magnetic resonance spectroscopy demonstrated significant, systemic, inter-batch variation which persisted until weaning. However, the urinary metabolic profiles demonstrated that significant inter-batch effects on 3-hydroxyisovalerate, trimethylamine-N-oxide and mannitol persisted beyond weaning to at least 35 days. Batch effects were linked to significant differences in the composition of colonic microbiota at 35 days, determined by 16 S pyrosequencing. Different weaning diets modulated both the microbiota and metabolic phenotype independently of the persistent batch effects. We demonstrate that the environment during the first day of life influences development of the microbiota and metabolic phenotype and thus should be taken into account when interrogating experimental outcomes. In addition, we suggest that intervention at this early time could provide ‘metabolic rescue'' for at-risk infants who have undergone aberrant patterns of initial intestinal colonisation.  相似文献   
130.
Decision making in moving animal groups has been shown to be disproportionately influenced by individuals at the front of groups. Therefore, an explanation of state-dependent positioning of individuals within animal groups may provide a mechanism for group movement decisions. Nutritional state is dynamic and can differ between members of the same group. It is also known to drive animal movement decisions. Therefore, we assayed 6 groups of 8 rainbowfish foraging in a flow tank. Half of the fish had been starved for 24h and half had been fed 1h prior to experimental start. Groups were assayed again one week later but individuals were allocated to the opposite nutritional treatment. During the assay the positions of individually identified fish were recorded as were the number of food items they each ate and the position within the group they acquired them from. Food-deprived fish were more often found towards the front of the shoal; the mean weighted positional score of food-deprived fish was significantly larger than that of well-fed fish. Individuals were not consistent in their position within a shoal between treatments. There was a significant positive correlation between mean weighted positional score and number of food items acquired which displays an obvious benefit to front positions. These results suggest that positional preferences are based on nutritional state and provide a mechanism for state-dependent influence on group decision-making as well as increasing our understanding of what factors are important for group functioning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号