首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1817篇
  免费   222篇
  2039篇
  2023年   21篇
  2022年   40篇
  2021年   71篇
  2020年   40篇
  2019年   52篇
  2018年   63篇
  2017年   58篇
  2016年   74篇
  2015年   105篇
  2014年   88篇
  2013年   103篇
  2012年   171篇
  2011年   138篇
  2010年   88篇
  2009年   83篇
  2008年   111篇
  2007年   93篇
  2006年   87篇
  2005年   74篇
  2004年   82篇
  2003年   60篇
  2002年   58篇
  2001年   19篇
  2000年   14篇
  1999年   17篇
  1998年   12篇
  1997年   18篇
  1996年   12篇
  1995年   11篇
  1994年   11篇
  1993年   10篇
  1992年   8篇
  1991年   8篇
  1990年   6篇
  1989年   15篇
  1988年   5篇
  1987年   6篇
  1986年   5篇
  1985年   7篇
  1984年   12篇
  1983年   7篇
  1982年   8篇
  1981年   5篇
  1980年   7篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1974年   6篇
  1942年   2篇
排序方式: 共有2039条查询结果,搜索用时 15 毫秒
41.
This article reviews the history and current state of ethanol production from sugarcane in Brazil and presents a strategy for improving ecosystem services and production. We propose that it is possible to produce ethanol from sugarcane while maintaining or even recovering some of Brazil's unique neotropical biodiversity and ecosystem climate services. This approach to the future of sustainable and responsible ethanol production is termed the ‘midway’ strategy. The ‘midway’ strategy involves producing the necessary biotechnology to increase productivity while synergistically protecting and regenerating rainforest. Three main areas of scientific and technological advance that are key to realizing the ‘midway’ strategy are: (i) improving the quality of scientific data on sugarcane biology as pertains to its use as a bioenergy crop; (ii) developing technologies for the use of bagasse for cellulosic ethanol; and (iii) developing policies to improve the ecosystem services associated with sugarcane landscapes. This article discusses these three issues in the general context of biofuels production and highlights examples of scientific achievements that are already leading towards the ‘midway’ strategy.  相似文献   
42.
Zou J  Rogers WE  DeWalt SJ  Siemann E 《Oecologia》2006,150(2):272-281
The EICA hypothesis predicts that shifts in allocation of invasive plants give rise to higher growth rates and lower herbivore defense levels in their introduced range than conspecifics in their native range. These changes in traits of invasive plants may also affect ecosystem processes. We conducted an outdoor pot experiment with Chinese tallow tree (Sapium sebiferum, Euphorbiaceae) seedlings from its native (Jiangsu, China, native ecotype) and introduced ranges (Texas, USA, invasive ecotype) to compare their relative performances in its native range and to examine ecotype effects on soil processes with and without fertilization. Consistent with predictions, plant (shoot and root) mass was significantly greater and leaf defoliation tended to be higher, while the root:shoot ratio was lower for the invasive ecotype relative to the native ecotype. Seasonal amounts of soil–plant system CO2 and N2O emissions were higher for the invasive ecotype than for the native ecotype. Soil respiration rates and N2O emission increases from fertilization were also greater for the invasive ecotype than for the native ecotype, while shoot-specific respiration rates (g CO2–C g−1 C day−1) did not differ between ecotypes. Further, soil inorganic N (ammonium and nitrate) was higher, but soil total N was lower for soils with the invasive ecotype than soils with the native ecotype. Compared with native ecotypes, therefore, invasive ecotypes may have developed a competition advantage in accelerating soil processes and promoting more nitrogen uptake through soil–plant direct interaction. The results of this study suggest that soil and ecosystem processes accelerated by variation in traits of invasive plants may have implications for their invasiveness.  相似文献   
43.
Rich fens are common boreal ecosystems with distinct hydrology, biogeochemistry and ecology that influence their carbon (C) balance. We present growing season soil chamber methane emission (FCH4), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross primary production (GPP) fluxes from a 9‐years water table manipulation experiment in an Alaskan rich fen. The study included major flood and drought years, where wetting and drying treatments further modified the severity of droughts. Results support previous findings from peatlands that drought causes reduced magnitude of growing season FCH4, GPP and NEE, thus reducing or reversing their C sink function. Experimentally exacerbated droughts further reduced the capacity for the fen to act as a C sink by causing shifts in vegetation and thus reducing magnitude of maximum growing season GPP in subsequent flood years by ~15% compared to control plots. Conversely, water table position had only a weak influence on ER, but dominant contribution to ER switched from autotrophic respiration in wet years to heterotrophic in dry years. Droughts did not cause inter‐annual lag effects on ER in this rich fen, as has been observed in several nutrient‐poor peatlands. While ER was dependent on soil temperatures at 2 cm depth, FCH4 was linked to soil temperatures at 25 cm. Inter‐annual variability of deep soil temperatures was in turn dependent on wetness rather than air temperature, and higher FCH4 in flooded years was thus equally due to increased methane production at depth and decreased methane oxidation near the surface. Short‐term fluctuations in wetness caused significant lag effects on FCH4, but droughts caused no inter‐annual lag effects on FCH4. Our results show that frequency and severity of droughts and floods can have characteristic effects on the exchange of greenhouse gases, and emphasize the need to project future hydrological regimes in rich fens.  相似文献   
44.
Bovine lactoferrampin (LFampinB) has been identified as a novel antimicrobial peptide, which is derived from the N-terminal lobe of bovine lactoferrin. In this study, the solution structure of LFampinB bound to negatively charged sodium dodecyl sulphate micelles and zwitterionic dodecyl phosphocholine micelles was determined using 2-dimensional nuclear magnetic resonance (NMR) spectroscopy. The interaction between LFampinB and multilamellar phospholipid vesicles, containing choline and glycerol head groups, was examined using differential scanning calorimetry (DSC). In addition, the interaction between the N-terminal tryptophan residue and model membranes of varying composition was analyzed by fluorescence spectroscopy. LFampinB adopts an amphipathic alpha-helical conformation across the first 11 residues of the peptide but remains relatively unstructured at the C-terminus. The hydrophobic surface of the amphipathic helix is bordered by the side chains of Trp1 and Phe11, and is seen in both micelle-bound structures. The fluorescence results suggest that Trp1 inserts into the membrane at the lipid/water interface. The phenyl side chain of Phe11 is oriented in the same direction as the indole ring of Trp1, allowing these two residues to serve as anchors for the lipid bilayer. The DSC results also indicate that LFampinB interacts with glycerol head groups in multilamellar vesicles but has little effect on acyl chain packing. Our results support a two step model of antimicrobial activity where the initial attraction of LFampinB is mediated by the cluster of positive charges on the C-terminus followed by the formation of the N-terminal helix which binds to the surface of the bacterial lipid bilayer.  相似文献   
45.

Background  

Chromosomal rearrangements, such as translocations and inversions, are recurrent phenomena during evolution, and both of them are involved in reproductive isolation and speciation. To better understand the molecular basis of chromosome rearrangements and their part in karyotype evolution, we have investigated the history of human chromosome 17 by comparative fluorescence in situ hybridization (FISH) and sequence analysis.  相似文献   
46.
Arthropods and pathogens damage leaves in natural ecosystems and may reduce photosynthesis at some distance away from directly injured tissue. We quantified the indirect effects of naturally occurring biotic damage on leaf-level photosystem II operating efficiency (ΦPSII) of 11 understory hardwood tree species using chlorophyll fluorescence and thermal imaging. Maps of fluorescence parameters and leaf temperature were stacked for each leaf and analyzed using a multivariate method adapted from the field of quantitative remote sensing. Two tree species, Quercus velutina and Cercis canadensis, grew in plots exposed to ambient and elevated atmospheric CO2 and were infected with Phyllosticta fungus, providing a limited opportunity to examine the potential interaction of this element of global change and biotic damage on photosynthesis. Areas surrounding damage had depressed ΦPSII and increased down-regulation of PSII, and there was no evidence of compensation in the remaining tissue. The depression of ΦPSII caused by fungal infections and galls extended >2.5 times further from the visible damage and was ∼40% more depressed than chewing damage. Areas of depressed ΦPSII around fungal infections on oaks growing in elevated CO2 were more than 5 times larger than those grown in ambient conditions, suggesting that this element of global change may influence the indirect effects of biotic damage on photosynthesis. For a single Q. velutina sapling, the area of reduced ΦPSII was equal to the total area directly damaged by insects and fungi. Thus, estimates based only on the direct effect of biotic agents may greatly underestimate their actual impact on photosynthesis.  相似文献   
47.
We tested a "standard" cryopreservation protocol (slow cooling with 10% DMSO) on the human embryonic stem cell (hESC) line H9 containing an Oct-4 (POU5F1) promoter-driven, enhanced green fluorescent protein (EGFP) reporter to monitor maintenance of pluripotency. Cells were cooled to -80 degrees C in cryovials and then transferred to a -80 degrees C freezer. Cells were held at -80 degrees C for 3 days ("short-term storage") or 3 months ("long-term storage"). Vials were thawed in a +36 degrees C water bath and cells were cultured for 3, 7, or 14 days. Propidium iodide (PI) was used to assess cell viability by flow cytometry. Control cells were passaged on the same day that the frozen cells were thawed. The majority of cells in control hESC cultures were Oct-4 positive and almost 99% of EGFP+ cells were alive as determined by exclusion of PI. In contrast, the frozen cells, even after 3 days of culture, contained only 50% live cells, and only 10% were EGFP-positive. After 7 days in culture, the proportion of dead cells decreased and there was an increase in the Oct-4-positive population but microscopic examination revealed large patches of EGFP-negative cells within clusters of colonies even after 14 days of culturing. After 3 months of storage at -80 degrees C the deleterious effect of freezing was even more pronounced: the samples regained a quantifiable number of EGFP-positive cells only after 7 days of culturing following thawing. It is concluded that new protocols and media are required for freezing hESC and safe storage at -80 degrees C as well as studies of the mechanisms of stress-related events associated with cell cryopreservation.  相似文献   
48.
49.
Raf kinase inhibitor protein (RKIP) was originally identified as a protein that bound membrane phospholipids and was named phosphatidylethanolamine binding protein-2 (PEBP-2). RKIP was than identified as a protein that bound Raf and blocked its ability to phosphorylate MEK, thus earning its new name of RKIP. Subsequent to identification of its role in the Raf:MEK pathway, RKIP has been demonstrated to regulate several other signaling pathways including G-protein signaling and NF-kappaB signaling. Its involvement in several signaling pathways has engendered RKIP to contribute to several physiological processes including membrane biosynthesis, spermatogenesis, neural development, and apoptosis. RKIP is expressed in many tissues including brain, lung, and liver and thus, dysregulation of RKIP expression or function has potential to contribute to pathophysiology in these tissues. Loss of RKIP expression in prostate cancer cells confers a metastatic phenotype on them. Additionally, restoration of RKIP expression in a metastatic prostate cancer cell line does not effect primary tumor growth, but it does inhibit prostate cancer metastasis. These parameters identify RKIP as a metastasis suppressor gene. In this review, the biology and pathophysiology of RKIP is described.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号