首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   11篇
  2023年   3篇
  2018年   2篇
  2015年   3篇
  2014年   6篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   5篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   6篇
  1992年   1篇
  1989年   5篇
  1988年   4篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1979年   3篇
  1978年   3篇
  1976年   2篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
  1960年   3篇
  1956年   1篇
  1955年   2篇
  1950年   2篇
  1907年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
21.
Although elevated levels of C-reactive protein (CRP) independently predict increased risk of development of metabolic syndrome, diabetes, myocardial infarction, and stroke, comprehensive analysis of the influence of genetic variation on CRP is not available. To address this issue, we performed a genome-wide association study among 6345 apparently healthy women in which we evaluated 336,108 SNPs as potential determinants of plasma CRP concentration. Overall, seven loci that associate with plasma CRP at levels achieving genome-wide statistical significance were found (range of p values for lead SNPs within the seven loci: 1.9 x 10(-)(8) to 6.2 x 10(-)(28)). Two of these loci (GCKR and HNF1A) are suspected or known to be associated with maturity-onset diabetes of the young, one is a gene-desert region on 12q23.2, and the remaining four loci are in or near the leptin receptor protein gene, the apolipoprotein E gene, the interleukin-6 receptor protein gene, or the CRP gene itself. The protein products of six of these seven loci are directly involved in metabolic syndrome, insulin resistance, beta cell function, weight homeostasis, and/or premature atherothrombosis. Thus, common variation in several genes involved in metabolic and inflammatory regulation have significant effects on CRP levels, consistent with CRP's identification as a useful biomarker of risk for incident vascular disease and diabetes.  相似文献   
22.
23.
24.
25.
Argonaute proteins are the core components of the RNA-induced silencing complex, the central effector of the mammalian RNA interference pathway. In the cytoplasm, they associate with at least two types of cytoplasmic RNA granules; processing bodies and stress granules, which function in mRNA degradation and translational repression, respectively. The significance of Argonaute association with these RNA granules is not entirely clear but it is likely related to their activities within the RNAi pathway. Understanding what regulates targeting of Argonautes to RNA granules may provide clues as to their functions at these organelles. To this end, there are a number of conflicting reports that describe the role of small RNAs in targeting Argonaute proteins in mammalian cells. We employed quantitative microscopic analyses of human Argonaute 2 (hAgo2) mutants to study factors that govern localization of this RNA-binding protein to cytoplasmic RNA granules. We report, for the first time, that hAgo2 is recruited to stress granules as a consequence of its interaction with miRNAs. Moreover, loading of small RNAs onto hAgo2 is not required for its stability, suggesting that a pool of unloaded hAgo2 may exist for extended periods of time in the cytoplasm.  相似文献   
26.

Background

Bacterial respiratory tract infections, mainly caused by Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are among the leading causes of global mortality and morbidity. Increased resistance of these pathogens to existing antibiotics necessitates the search for novel targets to develop potent antimicrobials.

Result

Here, we report a proof of concept study for the reliable identification of potential drug targets in these human respiratory pathogens by combining high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics. Approximately 20% of all genes in these three species were essential for growth and viability, including 128 essential and conserved genes, part of 47 metabolic pathways. By comparing these essential genes to the human genome, and a database of genes from commensal human gut microbiota, we identified and excluded potential drug targets in respiratory tract pathogens that will have off-target effects in the host, or disrupt the natural host microbiota. We propose 249 potential drug targets, 67 of which are targets for 75 FDA-approved antimicrobials and 35 other researched small molecule inhibitors. Two out of four selected novel targets were experimentally validated, proofing the concept.

Conclusion

Here we have pioneered an attempt in systematically combining the power of high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics to discover potential drug targets at genome-scale. By circumventing the time-consuming and expensive laboratory screens traditionally used to select potential drug targets, our approach provides an attractive alternative that could accelerate the much needed discovery of novel antimicrobials.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-958) contains supplementary material, which is available to authorized users.  相似文献   
27.
Lambert, Rodney K., and Peter D. Paré. Lungparenchymal shear modulus, airway wall remodeling, and bronchialhyperresponsiveness. J. Appl. Physiol.83(1): 140-147, 1997.When airways narrow, either through theaction of smooth muscle shortening or during forced expiration, thelung parenchyma is locally distorted and provides an increasedperibronchial stress that resists the narrowing. Although thisinterdependence has been well studied, the quantitative significance ofairway remodeling to interdependence has not been elucidated. We haveused an improved computational model of the bronchial response tosmooth muscle agonists to investigate the relationships between airwaynarrowing (as indicated by airway resistance), parenchymal shearmodulus, adventitial thickening, and inner wall thickening at lungrecoil pressures of 4, 5, and 8 cmH2O. We have found that, at lowrecoil pressures, decreases in parenchymal shear modulus have asignificant effect that is comparable to that of moderate thickening ofthe airway wall. At higher lung recoil pressures, the effect isnegligible.

  相似文献   
28.
The anaesthetics described for use in hamsters to date are suitable for the performance of short-term experimentation. However, an anaesthetic regimen was required which would provide a stable preparation for 6 h and hence, a suitable combination was developed. In the first set of experiments, the effect of anaesthetics (chloralose, urethane, and pentobarbital) were examined alone and in combination on arterial blood measurements. In the second set of experiments the effect of the combination of anaesthetics on arterial blood measurements and minute ventilation was examined for up to 6 h. Chloralose, urethane and pentobarbital when used alone in the hamster were considered inadequate for our needs. Chloralose did not produce adequate surgical anaesthesia whereas urethane and pentobarbital resulted in marked respiratory depression. Urethane also produced a trend towards metabolic acidosis. In contrast, the combination of agents resulted in surgical anaesthesia and the arterial blood measurements were adequate. Further, the use of the combination of anaesthetics in hamsters resulted in a stable preparation where arterial blood measurements and minute ventilation were maintained in a good range for up to 6 h. The combination of chloralose, urethane and sodium pentobarbital in hamsters should prove useful in long-term non-recovery experimentation which requires early surgical intervention, minimal respiratory depression and an even depth of anaesthesia.  相似文献   
29.
To further investigate the effects of airway cartilage softening on static and dynamic lung mechanics, 11 rabbits were treated with 100 mg/kg iv papain, whereas 9 control animals received no pretreatment. Lung mechanics were studied 24 h after papain injection. There was no significant difference in lung volumes, lung pressure-volume curves, or chest wall compliance. Papain-treated rabbits showed increased lung resistance: 91 +/- 63 vs. 39 +/- 22 cmH2O X l-1 X s (mean +/- SD; P less than 0.05), decreased maximal expiratory flows at all lung volumes, and preserved density dependence of maximal expiratory flows. We conclude that increased airway wall compliance is probably the mechanism that limited maximal expiratory flow in this animal model. In addition the increased lung resistance suggests that airway cartilage plays a role in the regulation of airway caliber during quiet tidal breathing.  相似文献   
30.
Tracheobronchial blood flow increases with cold air hyperventilation in the dog. The present study was designed to determine whether the cooling or the drying of the airway mucosa was the principal stimulus for this response. Six anesthetized dogs (group 1) were subjected to four periods of eucapnic hyperventilation for 30 min with warm humid air [100% relative humidity (rh)], cold dry air (-12 degrees C, 0% rh), warm humid air, and warm dry air (43 degrees C, 0% rh). Five minutes before the end of each period of hyperventilation, tracheal and central airway blood flow was determined using four differently labeled 15-micron diam radioactive microspheres. We studied another three dogs (group 2) in which 15- and 50-micron microspheres were injected simultaneously to determine whether there were any arteriovenous communications in the bronchovasculature greater than 15 micron diam. After the last measurements had been made, all dogs were killed, and the lungs, including the trachea, were excised and blood flow to the trachea, left lung bronchi, and parenchyma was calculated. Warm dry air hyperventilation produced a consistently greater increase in tracheobronchial blood flow (P less than 0.01) than cold dry air hyperventilation, despite the fact that there was a smaller fall (6 degrees C) in tracheal tissue temperature during warm dry air hyperventilation than during cold dry air hyperventilation (11 degrees C), suggesting that drying may be a more important stimulus than cold for increasing airway blood flow. In group 2, the 15-micron microspheres accurately reflected the distribution of airway blood flow but did not always give reliable measurements of parenchymal blood flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号