首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   49篇
  2023年   2篇
  2022年   7篇
  2021年   1篇
  2020年   6篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   9篇
  2015年   9篇
  2014年   16篇
  2013年   20篇
  2012年   17篇
  2011年   16篇
  2010年   4篇
  2009年   11篇
  2008年   10篇
  2007年   6篇
  2006年   10篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   11篇
  1991年   6篇
  1990年   6篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
排序方式: 共有230条查询结果,搜索用时 15 毫秒
101.
Scientists are interested in understanding the molecular origin of protein thermostability and thermoactivity for possible biotechnological applications. The enzymes from extremophilic organisms have been of particular interest in the last two decades. β-glycosidase, Tkβgly is a hyperthermophilic enzyme from Thermococcus kodakarensis KOD1. Tkβgly contains two conserved cysteine residues, C88 and C376. The protein tertiary structure obtained through homology modeling suggests that the C88 residue is located on the surface whereas C376 is inside the protein. To study the role of these cysteine residues, we substituted C88 and C376 with serine residues through site-directed mutagenesis. The wild-type and C376S protein existed in dimeric form and C88S in monomeric form, in an SDS-PAGE gel under non-reducing conditions. Optimal temperature experiments revealed that the wild-type was active at 100 °C whereas the C88S mutant exhibited optimal activity at 70 °C. The half-life of the enzyme at 70 °C was drastically reduced from 266 h to less than 1 h. Although C88 was not present in the active site region, the k cat/K m of C88S was reduced by 2-fold. Based on the structural model and biochemical properties, we propose that C88 is crucial in maintaining the thermostability and thermoactivity of the Tkβgly enzyme.  相似文献   
102.
Bacterial meningitis occurs when bloodborne pathogens invade and penetrate the blood-brain barrier (BBB), provoking inflammation and disease. Group B Streptococcus (GBS), the leading cause of neonatal meningitis, can enter human brain microvascular endothelial cells (hBMECs), but the host response to intracellular GBS has not been characterized. Here we sought to determine whether antibacterial autophagy, which involves selective recognition of intracellular organisms and their targeting to autophagosomes for degradation, is activated in BBB endothelium during bacterial infection. GBS infection resulted in increased punctate distribution of GFP-microtubule-associated protein 1 light chain 3 (LC3) and increased levels of endogenous LC3-II and p62 turnover, two hallmark indicators of active autophagic flux. Infection with GBS mutants revealed that bacterial invasion and the GBS pore-forming β-hemolysin/cytolysin (β-h/c) trigger autophagic activation. Cell-free bacterial extracts containing β-h/c activity induced LC3-II conversion, identifying this toxin as a principal provocative factor for autophagy activation. These results were confirmed in vivo using a mouse model of GBS meningitis as infection with WT GBS induced autophagy in brain tissue more frequently than a β-h/c-deficient mutant. Elimination of autophagy using Atg5-deficient fibroblasts or siRNA-mediated impairment of autophagy in hBMECs led to increased recovery of intracellular GBS. However, electron microscopy revealed that GBS was rarely found within double membrane autophagic structures even though we observed GBS-LC3 co-localization. These results suggest that although autophagy may act as a BBB cellular defense mechanism in response to invading and toxin-producing bacteria, GBS may actively thwart the autophagic pathway.  相似文献   
103.
Guanylyl cyclases (GCs), which synthesize the messenger cyclic guanosine 3′,5′-monophosphate, control several sensory functions, such as phototransduction, chemosensation, and thermosensation, in many species from worms to mammals. The GC chemoreceptor in sea urchin sperm can decode chemoattractant concentrations with single-molecule sensitivity. The molecular and cellular underpinnings of such ultrasensitivity are not known for any eukaryotic chemoreceptor. In this paper, we show that an exquisitely high density of 3 × 105 GC chemoreceptors and subnanomolar ligand affinity provide a high ligand-capture efficacy and render sperm perfect absorbers. The GC activity is terminated within 150 ms by dephosphorylation steps of the receptor, which provides a means for precise control of the GC lifetime and which reduces “molecule noise.” Compared with other ultrasensitive sensory systems, the 10-fold signal amplification by the GC receptor is surprisingly low. The hallmarks of this signaling mechanism provide a blueprint for chemical sensing in small compartments, such as olfactory cilia, insect antennae, or even synaptic boutons.  相似文献   
104.
The aim of the current study was to assess the effect of insulin-like growth factor-I (IGF-I; 100 ng/mL) on buffalo (Bubalus Bubalis) sperm functional parameters related to in vitro fertilization. The acrosin activity (the mean diameter of halo formation in micrometers) was significantly higher in the IGF-I group (14.17 ± 1.51) compared with that in the control group (9.50 ± 0.36) at 2 h incubation. The mitochondrial membrane potential (per cent) was significantly higher in the IGF-I group compared with that in the control group at 30 min (33.27 ± 2.62 vs. 26.71 ± 1.02), 60 min (24.24 ± 3.45 vs. 18.77 ± 2.09), and 90 min (22.86 ± 3.02 vs. 16.92 ± 1.24) incubation. The percentage of spermatozoa positive for sperm nuclear chromatin decondensation (NCD) differed significantly between the groups at 90 and 120 min incubation. The comet length was significantly lower in the IGF-I group compared with that in the control group at 2 h incubation. The percentage of fragmented DNA in the tail did not differ significantly between the groups at 2 h incubation. The percentage of acrosomal-reacted spermatozoa did not differ significantly between the IGF-I and the control groups at 4 h (41.12 ± 6.44 vs. 43.53 ± 5.05) incubation. The cleavage rate (per cent) was significantly higher in the IGF-I-treated group (56.73 ± 3.70) compared with that in the control group (44.85 ± 2.15). The current study suggests that the addition of IGF-I prevents deterioration of sperm functional parameters and fertility.  相似文献   
105.
Oxidative stress has been suggested as a contributory factor in development and complication of diabetes. The aim of the study was to evaluate the effect of diosmin (DS) in oxidative stress in streptozotocin-nicotinamide (STZ-NA)-induced diabetic rats by measuring the lipid peroxidation (LPO) as well as the ameliorative properties. Experimental diabetes was induced by a single intraperitoneal (i.p) injection of STZ (45 mg/kg body weight (b.w.)) dissolved in 0.1 mol/L citrate buffer (pH 4.5), 15 min after the i.p administration of NA (110 mg/kg b.w.). Diabetic rats exhibited increased plasma glucose with significant decrease in plasma insulin levels. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and the levels of low-molecular weight antioxidants vitamin C, vitamin E and reduced glutathione (GSH) were decreased while increases in the levels of LPO markers were observed in liver and kidney tissues of diabetic control rats as compared to normal control rats. Oral treatment with DS (100mg/kg/day) for a period of 45 days showed significant ameliorative effects on all the biochemical parameters studied. Biochemical findings were supported by histological studies. These results indicated that DS has potential ameliorative effects in addition to its antidiabetic effect in type 2 diabetic rats.  相似文献   
106.
The selective autophagy receptors Atg19 and Atg32 interact with two proteins of the core autophagic machinery: the scaffold protein Atg11 and the ubiquitin‐like protein Atg8. We found that the Pichia pastoris pexophagy receptor, Atg30, also interacts with Atg8. Both Atg30 and Atg32 interactions are regulated by phosphorylation close to Atg8‐interaction motifs. Extending this finding to Saccharomyces cerevisiae, we confirmed phosphoregulation for the mitophagy and pexophagy receptors, Atg32 and Atg36. Each Atg30 molecule must interact with both Atg8 and Atg11 for full functionality, and these interactions occur independently and not simultaneously, but rather in random order. We present a common model for the phosphoregulation of selective autophagy receptors.  相似文献   
107.
Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions –episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex''s role in semantic control and the dorsolateral prefrontal cortex''s role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to demonstrate dorso-ventral and rostro-caudal prefrontal cortex processing gradients in white matter integrity.  相似文献   
108.
109.
In its role as a mobile receptor for peroxisomal matrix cargo containing a peroxisomal targeting signal called PTS1, the protein Pex5 shuttles between the cytosol and the peroxisome lumen. Pex5 binds PTS1 proteins in the cytosol via its C-terminal tetratricopeptide domains and delivers them to the peroxisome lumen, where the receptor·cargo complex dissociates. The cargo-free receptor is exported to the cytosol for another round of import. How cargo release and receptor recycling are regulated is poorly understood. We found that Pex5 functions as a dimer/oligomer and that its protein interactions with itself (homo-oligomeric) and with Pex8 (hetero-oligomeric) control the binding and release of cargo proteins. These interactions are controlled by a redox-sensitive amino acid, cysteine 10 of Pex5, which is essential for the formation of disulfide bond-linked Pex5 forms, for high affinity cargo binding, and for receptor recycling. Disulfide bond-linked Pex5 showed the highest affinity for PTS1 cargo. Upon reduction of the disulfide bond by dithiothreitol, Pex5 transitioned to a noncovalent dimer, concomitant with the partial release of PTS1 cargo. Additionally, dissipation of the redox balance between the cytosol and the peroxisome lumen caused an import defect. A hetero-oligomeric interaction between the N-terminal domain (amino acids 1–110) of Pex5 and a conserved motif at the C terminus of Pex8 further facilitates cargo release, but only under reducing conditions. This interaction is also important for the release of PTS1 proteins. We suggest a redox-regulated model for Pex5 function during the peroxisomal matrix protein import cycle.  相似文献   
110.
Protein prenylation is a post translational modification that is indispensable for Ras–Rho mediated tumorigenesis. In mammals, three enzymes namely protein farnesyltransferase (FTase), geranylgeranyl transferase1 (GGTase1), and geranylgeranyl transferase2 (GGTase2) were found to be involved in this process. Usually proteins of Ras family will be farnesylated by FTase, Rho family will be geranylgeranylated by GGTase1. GGTase2 is exclusive for geranylgeranylating Rab protein family. FTase inhibitors such as FTI- 277 are potent anti-cancer agents in vitro. In vivo, mutated Ras proteins can either improve their affinity for FTase active site or undergo geranylgeranylation which confers resistance and no activity of FTase inhibitors. This led to the development of GGTase1 inhibitors. A well-defined 3-D structure of human GGTase1 protein is lacking which impairs its in silico and rational designing of inhibitors. A 3-D structure of human GGTase1 was constructed based on primary sequence available and homology modeling to which pubchem molecules library was virtually screened through AutoDock Vina. Our studies show that natural compounds Camptothecin (-8.2 Kcal/mol), Curcumin (-7.3 Kcal/mol) have higher binding affinities to GGTase-1 than that of established peptidomimetic GGTase-1 inhibitors such as GGTI-297 (-7.5 Kcal/mol), GGTI-298 (-7.5 Kcal/mol), CHEMBL525185 (-7.2 Kcal/mol).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号