首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   7篇
  182篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2017年   3篇
  2016年   3篇
  2015年   16篇
  2014年   11篇
  2013年   10篇
  2012年   18篇
  2011年   22篇
  2010年   10篇
  2009年   7篇
  2008年   6篇
  2007年   10篇
  2006年   9篇
  2005年   10篇
  2004年   6篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1982年   1篇
  1972年   1篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
71.
Runs of homozygosity (ROHs) are recognized signature of recessive inheritance. Contributions of ROHs to the genetic architecture of coronary artery disease and regulation of gene expression in cells relevant to atherosclerosis are not known. Our combined analysis of 24,320 individuals from 11 populations of white European ethnicity showed an association between coronary artery disease and both the count and the size of ROHs. Individuals with coronary artery disease had approximately 0.63 (95% CI: 0.4–0.8) excess of ROHs when compared to coronary-artery-disease-free control subjects (p = 1.49 × 10−9). The average total length of ROHs was approximately 1,046.92 (95% CI: 634.4–1,459.5) kb greater in individuals with coronary artery disease than control subjects (p = 6.61 × 10−7). None of the identified individual ROHs was associated with coronary artery disease after correction for multiple testing. However, in aggregate burden analysis, ROHs favoring increased risk of coronary artery disease were much more common than those showing the opposite direction of association with coronary artery disease (p = 2.69 × 10−33). Individual ROHs showed significant associations with monocyte and macrophage expression of genes in their close proximity—subjects with several individual ROHs showed significant differences in the expression of 44 mRNAs in monocytes and 17 mRNAs in macrophages when compared to subjects without those ROHs. This study provides evidence for an excess of homozygosity in coronary artery disease in outbred populations and suggest the potential biological relevance of ROHs in cells of importance to the pathogenesis of atherosclerosis.  相似文献   
72.

Background

Flavonoids possess a rich polypharmacological profile and their biological role is linked to their oxidation state protecting DNA from oxidative stress damage. However, their bioavailability is hampered due to their poor aqueous solubility. This can be surpassed through encapsulation to supramolecular carriers as cyclodextrin (CD). A quercetin- 2HP-β-CD complex has been formerly reported by us. However, once the flavonoid is in its 2HP-β-CD encapsulated state its oxidation potential, its decomplexation mechanism, its potential to protect DNA damage from oxidative stress remained elusive. To unveil this, an array of biophysical techniques was used.

Methods

The quercetin-2HP-β-CD complex was evaluated through solubility and dissolution experiments, electrochemical and spectroelectrochemical studies (Cyclic Voltammetry), UV–Vis spectroscopy, HPLC-ESI-MS/MS and HPLC-DAD, fluorescence spectroscopy, NMR Spectroscopy, theoretical calculations (density functional theory (DFT)) and biological evaluation of the protection offered against H2O2-induced DNA damage.

Results

Encapsulation of quercetin inside the supramolecule's cavity enhanced its solubility and retained its oxidation profile. Although the protective ability of the quercetin-2HP-β-CD complex against H2O2 was diminished, iron serves as a chemical stimulus to dissociate the complex and release quercetin.

Conclusions

We found that in a quercetin-2HP-β-CD inclusion complex quercetin retains its oxidation profile similarly to its native state, while iron can operate as a chemical stimulus to release quercetin from its host cavity.

General significance

The oxidation profile of a natural product once it is encapsulated in a supramolecular carrier was unveiled as also it was discovered that decomplexation can be triggered by a chemical stimilus.  相似文献   
73.
A mutation screen in Aspergillus nidulans uncovered mutations in the acdX gene that led to altered repression by acetate, but not by glucose. AcdX of A. nidulans is highly conserved with Spt8p of Saccharomyces cerevisiae, and since Spt8p is a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex, the SAGA complex may have a role in acetate repression in A. nidulans. We used a bioinformatic approach to identify genes encoding most members of the SAGA complex in A. nidulans, and a proteomic analysis to confirm that most protein components identified indeed exist as a complex in A. nidulans. No apparent compositional differences were detected in mycelia cultured in acetate compared to glucose medium. The methods used revealed apparent differences between Yeast and A. nidulans in the deubiquitination (DUB) module of the complex, which in S. cerevisiae consists of Sgf11p, Sus1p, and Ubp8p. Although a convincing homologue of S. cerevisiae Ubp8p was identified in the A. nidulans genome, there were no apparent homologues for Sus1p and Sgf11p. In addition, when the SAGA complex was purified from A. nidulans, members of the DUB module were not co-purified with the complex, indicating that functional homologues of Sus1p and Sgf11p were not part of the complex. Thus, deubiquitination of H2B-Ub in stress conditions is likely to be regulated differently in A. nidulans compared to S. cerevisiae.  相似文献   
74.
Primitive expression (PE) is a form of dance therapy (DT) that involves an interaction of ethologically and socially based forms which are supplied for re-enactment. There exist very few studies of DT applications including in their protocol the measurement of neurophysiological parameters. The present pilot study investigates the use of the correlation coefficient (ρ) and mutual information (MI), and of novel measures extracted from ρ and MI, on electroencephalographic (EEG) data recorded in patients with schizophrenia while they undergo PE DT, in order to expand the set of neurophysiology-based approaches for quantifying possible DT effects, using parameters that might provide insights about any potential brain connectivity changes in these patients during the PE DT process. Indication is provided for an acute potentiation effect, apparent at late-stage PE DT, on the inter-hemispheric connectivity in frontal areas, as well as for attenuation of the inter-hemispheric connectivity of left frontal and right central areas and for potentiation of the intra-hemispheric connectivity of frontal and central areas, bilaterally, in the transition from early to late-stage PE DT. This pilot study indicates that by using EEG connectivity measures based on ρ and MI, the set of useful neurophysiology-based approaches for quantifying possible DT effects is expanded. In the framework of the present study, the causes of the observed connectivity changes cannot be attributed with certainty to PE DT, but indications are provided that these measures may contribute to a detailed assessment of neurophysiological mechanisms possibly being affected by this therapeutic process.  相似文献   
75.
Genetically encoded fluorescent H2O2 probes continue to advance the field of redox biology. Here, we compare the previously established peroxiredoxin-based H2O2 probe roGFP2-Tsa2ΔCR with the newly described OxyR-based H2O2 probe HyPer7, using yeast as the model system. Although not as sensitive as roGFP2-Tsa2ΔCR, HyPer7 is much improved relative to earlier HyPer versions, most notably by ratiometric pH stability. The most striking difference between the two probes is the dynamics of intracellular probe reduction. HyPer7 is rapidly reduced, predominantly by the thioredoxin system, whereas roGFP2-Tsa2ΔCR is reduced more slowly, predominantly by the glutathione system. We discuss the pros and cons of each probe and suggest that future side-by-side measurements with both probes may provide information on the relative activity of the two major cellular reducing systems.  相似文献   
76.
Spermine oxidase (SMO) and acetylpolyamine oxidase (APAO) are FAD-dependent enzymes that are involved in the highly regulated pathways of polyamine biosynthesis and degradation. Polyamine content is strictly related to cell growth, and dysfunctions in polyamine metabolism have been linked with cancer. Specific inhibitors of SMO and APAO would allow analyzing the precise role of these enzymes in polyamine metabolism and related pathologies. However, none of the available polyamine oxidase inhibitors displays the desired characteristics of selective affinity and specificity. In addition, repeated efforts to obtain structural details at the atomic level on these two enzymes have all failed. In the present study, in an effort to better understand structure–function relationships, SMO enzyme–substrate complex has been probed through a combination of molecular modeling, site-directed mutagenesis and biochemical studies. Results obtained indicate that SMO binds spermine in a similar conformation as that observed in the yeast polyamine oxidase FMS1-spermine complex and demonstrate a major role for residues His82 and Lys367 in substrate binding and catalysis. In addition, the SMO enzyme–substrate complex highlights the presence of an active site pocket with highly polar characteristics, which may explain the different substrate specificity of SMO with respect to APAO and provide the basis for the design of specific inhibitors for SMO and APAO.  相似文献   
77.
Two thermophilic extracellular proteases, designated Lmm-protease-Lh (29 kDa) and Hmm-protease-Lh (62 kDa), were purified from the Lactobacillus helveticus from kefir, and found active in media containing dithiothreitol; the activity of Lmm-protease-Lh was increased significantly in media containing also EDTAK2. Both novel proteases maintained full activity at 60 °C after 1-h incubation at 10 °C as well as at 80 °C, showing optimum kcat/Km values at pH 7.00 and 60 °C. Only irreversible inhibitors specific for cysteine proteinases strongly inhibited the activity of both novel enzymes, while they remained unaffected by irreversible inhibitors specific for serine proteinases. Both enzymes hydrolyzed the substrate Suc-FR-pNA via Michaelis–Menten kinetics; conversely, the substrate Cbz-FR-pNA was hydrolyzed by Lmm-protease-Lh via Michaelis–Menten kinetics and by Hmm-protease-Lh via substrate inhibition kinetics. Valuable rate constants and activation energies were estimated from the temperature-(kcat/Km) profiles of both enzymes, and useful results were obtained from the effect of different metallic ions on their Michaelis–Menten parameters.  相似文献   
78.
Helleborus cyclophyllus Boiss is a rhizomatous plant species, with strong allelochemical properties, that has been used since ancient times for its therapeutic properties. In the present study we investigated the ability of an aqueous-soluble fraction of the methanol extract of H. cyclophyllus Boiss leaves, to induce apoptotic cell death on A549 human bronchial epithelial adenocarcinoma cells. A primary human lung fibroblasts’ cell line was used as a model of normal-healthy cells for comparison. Cell morphology was examined after appropriate staining, cytotoxic activity of the extract was determined by the MTT assay, the type of cell death was analyzed by flow cytometry, confirmation of apoptosis was evaluated with the analysis of caspase-3, PARP1 by western blotting, while the chemical composition was assessed by liquid chromatography–tandem mass spectrometry (LC–MS/MS). H. cyclophyllus Boiss extract was selectively active on A549 cells inducing significant morphological changes, even at low concentrations. Characteristic morphological alterations included the release of vesicular formations from A549 cell membranes (ectosomes), detachment of cells from their substrate, generation of a large vesicle into the cytoplasm (thanatosome) and the formation of apoptotic bodies. The selective apoptotic action on treated cells was also confirmed by biochemical criteria. Low concentrations, however, did not affect normal cells. The phytochemical analysis of the extract revealed the presence of cardiac glucosides, bufadienolides and phytoecdysteroids. To the best of our knowledge, the above-mentioned sequences of events leading selectively cancer cells to apoptosis, has not been reported before.Electronic supplementary materialThe online version of this article (10.1007/s10616-020-00425-4) contains supplementary material, which is available to authorized users.  相似文献   
79.
Maize polyamine oxidase (MPAO), the only member of the polyamine oxidase (PAO) family whose three-dimensional structure is known, is characterized by a 30 A long U-shaped catalytic tunnel located between the substrate binding domain and the FAD. To shed light on the MPAO ligand binding mode, we studied the inhibition properties of linear diamines, agmatine, prenylagmatine (G3), G3 analogues, and guazatine, and analyzed the structural determinants of their biological activity. Linear diamines competitively inhibited MPAO, with the inhibitory activity increasing as a function of the number of methylene groups. With regard to the guanidino competitive inhibitors, including agmatine, G3, and G3 analogues, the presence of a hydrophobic substituent constitutes the principal factor influencing MPAO inhibition, as the addition of a hydrophobic substituent to the guanidino group of both G3 and G3 analogues greatly increases the inhibitory activity. Moreover, results obtained by a molecular modeling procedure indicated that in their preferred orientation, G3 analogues point the ammonium group toward the narrow entrance of the tunnel, while the terminal hydrophobic group is located within the large entrance. The high binding affinity for MPAO exhibited by G3 and G3 analogues bearing a prenyl group as a substituent on the guanidino moiety is in agreement with the observation that the prenyl group binds in a well-defined hydrophobic pocket, mainly formed by aromatic residues. Finally, docking simulations performed with the charged and uncharged forms of MPAO inhibitors indicate that the stereoelectronic properties of the MPAO active site are consistent with the binding of inhibitors in the protonated form.  相似文献   
80.
Hyaluronan (HA) is involved in several important steps of sperm storage and of fertilization. This study investigates the presence and concentration of HA in oviductal fluid (ODF), together with the localization of HA and the presence of hyaluronan-binding proteins (HABPs) in the oviductal epithelium of normally cycling dairy heifers and cows. The concentration and amount of HA in ODF, collected over the course of several oestrous cycles via catheters placed in the isthmic and ampullar tubal segments, were measured using an ELISA. The concentration and amount of HA in ODF did not vary significantly between these anatomical regions, nor between the stages of the oestrous cycle (p > 0.05), although the amount of HA seemed to peak during oestrous. The most HA per day (2.9 +/- 0.64 microg, least square mean +/- SEM) was produced on the day of ovulation, whereas the lowest amount (1.25 +/- 0.68 microg) was produced 4 days before ovulation. To investigate the localization of HA, tissue samples were retrieved at well-defined stages of the oestrous cycle and from corresponding regions of the oviduct. Sections and protein extracts from the tissue samples were studied histochemically using biotinylated HABP and immunoblotted with fluorescein isothiocyanate (FITC)-HA, respectively. Presence of HA labelling in the oviductal epithelium was restricted to the sperm reservoir, a localization that seemed to be cycle-independent. The immunoblotting of samples from the lining epithelium revealed seven bands of HABPs. We confirm that the bovine oviduct produces HA and its binding proteins, and that HA is mainly localized to the epithelium of the sperm reservoir.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号