首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   28篇
  国内免费   2篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   5篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   6篇
  2008年   5篇
  2007年   6篇
  2006年   2篇
  2005年   7篇
  2004年   3篇
  2003年   1篇
  2002年   5篇
  2001年   3篇
  2000年   9篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
11.

Background  

In mammals, contrary to what is usually assumed, recent evidence suggests that synonymous mutations may not be selectively neutral. This position has proven contentious, not least because of the absence of a viable mechanism. Here we test whether synonymous mutations might be under selection owing to their effects on the thermodynamic stability of mRNA, mediated by changes in secondary structure.  相似文献   
12.
Nitrobenzene 1,2-dioxygenase from Comamonas sp. strain JS765 catalyzes the initial reaction in nitrobenzene degradation, forming catechol and nitrite. The enzyme also oxidizes the aromatic rings of mono- and dinitrotoluenes at the nitro-substituted carbon, but the basis for this specificity is not understood. In this study, site-directed mutagenesis was used to modify the active site of nitrobenzene dioxygenase, and the contribution of specific residues in controlling substrate specificity and enzyme performance was evaluated. The activities of six mutant enzymes indicated that the residues at positions 258, 293, and 350 in the α subunit are important for determining regiospecificity with nitroarene substrates and enantiospecificity with naphthalene. The results provide an explanation for the characteristic specificity with nitroarene substrates. Based on the structure of nitrobenzene dioxygenase, substitution of valine for the asparagine at position 258 should eliminate a hydrogen bond between the substrate nitro group and the amino group of asparagine. Up to 99% of the mononitrotoluene oxidation products formed by the N258V mutant were nitrobenzyl alcohols rather than catechols, supporting the importance of this hydrogen bond in positioning substrates in the active site for ring oxidation. Similar results were obtained with an I350F mutant, where the formation of the hydrogen bond appeared to be prevented by steric interference. The specificity of enzymes with substitutions at position 293 varied depending on the residue present. Compared to the wild type, the F293Q mutant was 2.5 times faster at oxidizing 2,6-dinitrotoluene while retaining a similar Km for the substrate based on product formation rates and whole-cell kinetics.  相似文献   
13.
糖尿病微血管病变严重影响了患者生活质量,是患者致死致残主要原因。微血管病变主要表现在视网膜、肾、神经、心肌组织。微血管病变的机制尚未完全清楚,近年越来越多研究发现血管内皮祖细胞(endothelial progenitor cells,EPCs)是该病发病重要原因。EPCs有分化为成熟的内皮细胞并且参与新血管形成和新生的能力。正常情况下内皮损失和EPCs对内皮的修复作用处于动态平衡状态,一旦EPCs受损,内皮损害和修复之间的平衡被打破,内皮层的完整性遭到破坏,必然参与糖尿病血管病变的发生发展。国内外大量研究证明糖尿病合并大血管病变EPCs数目功能改变,而糖尿病合并微血管病变EPCs的怎样变化?本文就EPCs与糖尿病微血管病变的关系进行系统综述。  相似文献   
14.
The armyworm, Spodoptera frugiperda, is the principal pest of corn in Brazil. Control is achieved primarily by synthetic insecticides, which cause problems for the agro-ecosystem. Alternative methods of control are under investigation and citronella (Cymbopogon winterianus) essential oil appears to be a promising agent. We investigated the effects of citronella oil using histological, histochemical and immunohistochemical methods. The midgut of larvae treated with citronella exhibited altered epithelium including cytoplasmic protrusions, columnar cell extrusion, pyknotic nuclei, and increased periodic acid-Schiff positive granules. Regenerative cells in the epithelium of the midgut increased in number, which facilitated subsequent regeneration of this tissue. After exposure to citronella, trophocytes, the principal cell type of the fat body, possessed enlarged vacuoles and mitotic bodies, and contained reduced amounts of glycogen, lipid, and protein. Citronella oil caused morphological changes of the midgut and reduction of stored resources in the fat body, which may adversely affect insect reproduction and survival.  相似文献   
15.
The protein components of the 2-nitrotoluene (2NT) and nitrobenzene dioxygenase enzyme systems from Acidovorax sp. strain JS42 and Comamonas sp. strain JS765, respectively, were purified and characterized. These enzymes catalyze the initial step in the degradation of 2-nitrotoluene and nitrobenzene. The identical shared reductase and ferredoxin components were monomers of 35 and 11.5 kDa, respectively. The reductase component contained 1.86 g-atoms iron, 2.01 g-atoms sulfur, and one molecule of flavin adenine dinucleotide per monomer. Spectral properties of the reductase indicated the presence of a plant-type [2Fe-2S] center and a flavin. The reductase catalyzed the reduction of cytochrome c, ferricyanide, and 2,6-dichlorophenol indophenol. The ferredoxin contained 2.20 g-atoms iron and 1.99 g-atoms sulfur per monomer and had spectral properties indicative of a Rieske [2Fe-2S] center. The ferredoxin component could be effectively replaced by the ferredoxin from the Pseudomonas sp. strain NCIB 9816-4 naphthalene dioxygenase system but not by that from the Burkholderia sp. strain LB400 biphenyl or Pseudomonas putida F1 toluene dioxygenase system. The oxygenases from the 2-nitrotoluene and nitrobenzene dioxygenase systems each had spectral properties indicating the presence of a Rieske [2Fe-2S] center, and the subunit composition of each oxygenase was an α3β3 hexamer. The apparent Km of 2-nitrotoluene dioxygenase for 2NT was 20 μM, and that for naphthalene was 121 μM. The specificity constants were 7.0 μM−1 min−1 for 2NT and 1.2 μM−1 min−1 for naphthalene, indicating that the enzyme is more efficient with 2NT as a substrate. Diffraction-quality crystals of the two oxygenases were obtained.  相似文献   
16.
Pseudomonas sp. strain ADP utilizes the human-made s-triazine herbicide atrazine as the sole nitrogen source. The results reported here demonstrate that atrazine and the atrazine degradation intermediates N-isopropylammelide and cyanuric acid are chemoattractants for strain ADP. In addition, the nonmetabolized s-triazine ametryn was also an attractant. The chemotactic response to these s-triazines was not specifically induced during growth with atrazine, and atrazine metabolism was not required for the chemotactic response. A cured variant of strain ADP (ADP M13-2) was attracted to s-triazines, indicating that the atrazine catabolic plasmid pADP-1 is not necessary for the chemotactic response and that atrazine degradation and chemotaxis are not genetically linked. These results indicate that atrazine and related s-triazines are detected by one or more chromosomally encoded chemoreceptors in Pseudomonas sp. strain ADP. We demonstrated that Escherichia coli is attracted to the s-triazine compounds N-isopropylammelide and cyanuric acid, and an E. coli mutant lacking Tap (the pyrimidine chemoreceptor) was unable to respond to s-triazines. These data indicate that pyrimidines and triazines are detected by the same chemoreceptor (Tap) in E. coli. We showed that Pseudomonas sp. strain ADP is attracted to pyrimidines, which are the naturally occurring structures closest to triazines, and propose that chemotaxis toward s-triazines may be due to fortuitous recognition by a pyrimidine chemoreceptor in Pseudomonas sp. strain ADP. In competition assays, the presence of atrazine inhibited chemotaxis of Pseudomonas sp. strain ADP to cytosine, and cytosine inhibited chemotaxis to atrazine, suggesting that pyrimidines and s-triazines are detected by the same chemoreceptor.Atrazine [2-chloro-4-(N-ethylamino)-6-(N-isopropylamino)-1,3,5-s-triazine] is a human-made herbicide that is used worldwide to control broadleaf and grassy weeds. As one of the most heavily used herbicides in the United States, atrazine can be present in parts per million in agricultural runoffs (3), which exceeds the U.S. Environmental Protection Agency''s maximum allowable contaminant level of 3 ppb in ground and surface waters (13). Atrazine is persistent in soil (34) and was once considered nontoxic to animals. However, recent studies have shown that atrazine causes sexual abnormalities in frogs (21, 22, 50), reduced testosterone production in rats (53), and elevated levels of prostate cancer in workers at an atrazine-manufacturing factory (45). These studies suggest that there is cause for concern about atrazine residues in soil, groundwater, and surface waters.Several bacterial strains capable of mineralizing atrazine have been isolated (4, 27, 41, 49, 51, 52, 58). The best-studied atrazine-degrading strain, Pseudomonas sp. strain ADP (atrazine degrading pseudomonad), was isolated from an atrazine spill site in Minnesota (27). Strain ADP utilizes atrazine as a sole nitrogen source and mineralizes it in the process (27). The pathway of atrazine degradation in strain ADP has been characterized in detail (Fig. (Fig.1),1), and the genes encoding the six enzymes required for atrazine degradation have been cloned and sequenced (5, 7, 9, 10, 29, 42). The six genes are located in four distant locations on the atrazine catabolic plasmid (pADP-1) present in strain ADP (10, 29). atzA, atzB, and atzC, which encode the first three enzymes of the pathway, are constitutively expressed and highly conserved in atrazine-degrading bacteria isolated from geographically distinct locations (8, 11). Products of the atzDEF gene cluster catalyze the last three steps of atrazine degradation. This operon is divergently transcribed from atzR, the product of which has high homology to LysR-type regulatory proteins (29). AtzR and the inducer cyanuric acid are required for the expression of the atzDEF operon (14), and the operon is also subject to nitrogen control (15).Open in a separate windowFIG. 1.Pathway of atrazine degradation in Pseudomonas sp. strain ADP (reviewed in reference 55).In a study investigating the bioavailability of atrazine, Park et al. provided evidence that two atrazine-degrading strains, Pseudomonas sp. strain ADP and Agrobacterium radiobacter J14a, were chemotactically attracted to atrazine (38). Chemotaxis, the ability of motile bacteria to detect and respond to specific chemicals, can help bacteria find an optimal niche for their survival and growth and may play a role in the efficient degradation of pollutants in the environment (33, 37). Chemotaxis has been shown to enhance naphthalene biodegradation in both a heterogeneous aqueous system (30) and a non-aqueous-phase liquid system (24). In addition, a chemotactic naphthalene-degrading strain caused a higher rate of naphthalene desorption than was observed with nonchemotactic and nonmotile strains (24). Pseudomonas sp. strain ADP and recombinant strains expressing atz genes have been used to remove atrazine from soil in laboratory and field scale experiments (32, 48). If chemotaxis can enhance bioavailability in environments where the chemicals are sorbed to particles, the use of a motile chemotactic strain for bioremediation would be advantageous. Aside from the practical implications of atrazine chemotaxis, we are interested in understanding the evolution of a chemotactic response to a human-made chemical that was initially synthesized just 50 years ago (23). The results reported here indicate that Pseudomonas sp. strain ADP is chemotactically attracted to atrazine, atrazine metabolites, and the nonmetabolizable structural analog ametryn. The chemotactic response is not induced during growth with atrazine in strain ADP and does not require atrazine metabolism. We demonstrated that a single chemoreceptor (Tap) mediates chemotaxis to s-triazines and structurally similar pyrimidines in Escherichia coli. Additionally, we found that Pseudomonas sp. strain ADP is attracted to pyrimidines. In competition assays, cytosine inhibited atrazine chemotaxis, and vice versa. We therefore concluded that pyrimidines and s-triazines are detected by a single chemoreceptor in Pseudomonas sp. strain ADP.  相似文献   
17.
Nitroaromatic compounds are used extensively in many industrial processes and have been released into the environment where they are considered environmental pollutants. Nitroaromatic compounds, in general, are resistant to oxidative attack due to the electron-withdrawing nature of the nitro groups and the stability of the benzene ring. However, the bacterium Comamonas sp. strain JS765 can grow with nitrobenzene as a sole source of carbon, nitrogen and energy. Biodegradation is initiated by the nitrobenzene dioxygenase (NBDO) system. We have determined the structure of NBDO, which has a hetero-hexameric structure similar to that of several other Rieske non-heme iron dioxygenases. The catalytic subunit contains a Rieske iron-sulfur center and an active-site mononuclear iron atom. The structures of complexes with substrates nitrobenzene and 3-nitrotoluene reveal the structural basis for its activity with nitroarenes. The substrate pocket contains an asparagine residue that forms a hydrogen bond to the nitro-group of the substrate, and orients the substrate in relation to the active-site mononuclear iron atom, positioning the molecule for oxidation at the nitro-substituted carbon.  相似文献   
18.
19.
beta-Ketoadipate:succinyl-coenzyme A transferase (beta-ketoadipate:succinyl-CoA transferase) (EC 2.8.3.6) carries out the penultimate step in the conversion of benzoate and 4-hydroxybenzoate to tricarboxylic acid cycle intermediates in bacteria utilizing the beta-ketoadipate pathway. This report describes the characterization of a DNA fragment from Pseudomonas putida that encodes this enzyme. The fragment complemented mutants defective in the synthesis of the CoA transferase, and two proteins of sizes appropriate to encode the two nonidentical subunits of the enzyme were produced in Escherichia coli when the fragment was placed under the control of a phage T7 promoter. DNA sequence analysis revealed two open reading frames, designated pcaI and pcaJ, that were separated by 8 bp, suggesting that they may comprise an operon. A comparison of the deduced amino acid sequence of the P. putida CoA transferase genes with the sequences of two other bacterial CoA transferases and that of succinyl-CoA:3-ketoacid CoA transferase from pig heart suggests that the homodimeric structure of the mammalian enzyme may have resulted from a gene fusion of the bacterial alpha and beta subunit genes during evolution. Conserved functional groups important to the catalytic activity of CoA transferases were also identified.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号