首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   19篇
  292篇
  2022年   6篇
  2021年   7篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   7篇
  2016年   4篇
  2015年   7篇
  2014年   9篇
  2013年   13篇
  2012年   13篇
  2011年   24篇
  2010年   9篇
  2009年   6篇
  2008年   23篇
  2007年   17篇
  2006年   14篇
  2005年   14篇
  2004年   12篇
  2003年   16篇
  2002年   8篇
  2001年   6篇
  2000年   2篇
  1999年   6篇
  1998年   5篇
  1997年   1篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
  1971年   5篇
  1968年   2篇
  1966年   2篇
  1947年   1篇
排序方式: 共有292条查询结果,搜索用时 0 毫秒
21.
Tyrosinase is a type I membrane glycoprotein essential for melanin synthesis. Mutations in tyrosinase lead to albinism due, at least in part, to aberrant retention of the protein in the endoplasmic reticulum and subsequent degradation by the cytosolic ubiquitin-proteasomal pathway. A similar premature degradative fate for wild type tyrosinase also occurs in amelanotic melanoma cells. To understand critical cotranslational events, the glycosylation and rate of translation of tyrosinase was studied in normal melanocytes, melanoma cells, an in vitro cell-free system, and semi-permeabilized cells. Site-directed mutagenesis revealed that all seven N-linked consensus sites are utilized in human tyrosinase. However, glycosylation at Asn-290 (Asn-Gly-Thr-Pro) was suppressed, particularly when translation proceeded rapidly, producing a protein doublet with six or seven N-linked core glycans. The inefficient glycosylation of Asn-290, due to the presence of a proximal Pro, was enhanced in melanoma cells possessing 2-3-fold faster (7.7-10.0 amino acids/s) protein translation rates compared with normal melanocytes (3.5 amino acids/s). Slowing the translation rate with the protein synthesis inhibitor cycloheximide increased the glycosylation efficiency in live cells and in the cell-free system. Therefore, the rate of protein translation can regulate the level of tyrosinase N-linked glycosylation, as well as other potential cotranslational maturation events.  相似文献   
22.
Rapid atrial pacing causes electrical remodeling that leads to atrial fibrillation (AF). AF can further remodel atrial electrophysiology to maintain AF. Our previous studies showed that there was a marked difference in the duration of AF in dogs that have been atrial paced at 400 beats/min for 6 wk. We hypothesized that this difference is based on the changes in the degree of electrical remodeling caused by rapid atrial pacing versus that by AF. Right atrial cells were isolated from control dogs (Con, N = 28), from dogs with chronic AF (cAF dogs, N = 13, episodes lasting at least 6 days), or from dogs with nonsustained or brief episodes of AF (nAF dogs, N = 10, episodes lasting minutes to hours). Both transient outward (Ito) and sustained outward K+ current (Isus) densities/functions were determined using whole cell voltage-clamp techniques. In nAF cells, Ito density was reduced by 69% at +40 mV: from 7.1 +/- 0.5 pA/pF (Con, n = 59) to 2.2 +/- 0.2 pA/pF (nAF, n = 24) (P < 0.05). The voltage dependence of inactivation of Ito was shifted positively and decay kinetics were changed; however, recovery from inactivation was not altered in nAF cells. In contrast, Ito density in cAF cells was both significantly different from Con cells and larger than that in nAF cells [at +40 mV, 3.5 +/- 0.3 pA/pF (cAF, n = 29), P < 0.05]. In cAF cells, recovery from inactivation and decay of Ito were both slow; yet, voltage dependence inactivation of Ito approached that of Con cells. Furthermore, "recovered" Ito of cAF cells was more sensitive to tetraethylammonium than currents of Con and nAF cells. Isus densities of nAF and cAF cells did not differ. Both nAF and cAF cells have reduced Ito versus Con cells, but Ito remodeling of nAF cells differed from that of cAF cells. Ito in cAF dogs was likely remodeled by AF per se, whereas that in nAF dogs was likely the consequence of the rapid rate in the absence of sustained AF.  相似文献   
23.
The Photosystem I (PS I) reaction center contains two branches of nearly symmetric cofactors bound to the PsaA and PsaB heterodimer. From the x-ray crystal structure it is known that Trp697PsaA and Trp677PsaB are pi-stacked with the head group of the phylloquinones and are H-bonded to Ser692PsaA and Ser672PsaB, whereas Arg694PsaA and Arg674PsaB are involved in a H-bonded network of side groups that connects the binding environments of the phylloquinones and FX. The mutants W697FPsaA, W677FPsaB, S692CPsaA, S672CPsaB, R694APsaA, and R674APsaB were constructed and characterized. All mutants grew photoautotrophically, yet all showed diminished growth rates compared with the wild-type, especially at higher light intensities. EPR and electron nuclear double resonance (ENDOR) studies at both room temperature and in frozen solution showed that the PsaB mutants were virtually identical to the wild-type, whereas significant effects were observed in the PsaA mutants. Spin polarized transient EPR spectra of the P700+A1- radical pair show that none of the mutations causes a significant change in the orientation of the measured phylloquinone. Pulsed ENDOR spectra reveal that the W697FPsaA mutation leads to about a 5% increase in the hyperfine coupling of the methyl group on the phylloquinone ring, whereas the S692CPsaA mutation causes a similar decrease in this coupling. The changes in the methyl hyperfine coupling are also reflected in the transient EPR spectra of P700+A1- and the CW EPR spectra of photoaccumulated A1-. We conclude that: (i) the transient EPR spectra at room temperature are predominantly from radical pairs in the PsaA branch of cofactors; (ii) at low temperature the electron cycle involving P700 and A1 similarly occurs along the PsaA branch of cofactors; and (iii) mutation of amino acids in close contact with the PsaA side quinone leads to changes in the spin density distribution of the reduced quinone observed by EPR.  相似文献   
24.
The GXXXG motif is a frequently occurring sequence of residues that is known to favor helix-helix interactions in membrane proteins. Here we show that the GXXXG motif is also prevalent in soluble proteins whose structures have been determined. Some 152 proteins from a non-redundant PDB set contain at least one alpha-helix with the GXXXG motif, 41 +/- 9% more than expected if glycine residues were uniformly distributed in those alpha-helices. More than 50% of the GXXXG-containing alpha-helices participate in helix-helix interactions. In fact, 26 of those helix-helix interactions are structurally similar to the helix-helix interaction of the glycophorin A dimer, where two transmembrane helices associate to form a dimer stabilized by the GXXXG motif. As for the glycophorin A structure, we find backbone-to-backbone atomic contacts of the C alpha-H...O type in each of these 26 helix-helix interactions that display the stereochemical hallmarks of hydrogen bond formation. These glycophorin A-like helix-helix interactions are enriched in the general set of helix-helix interactions containing the GXXXG motif, suggesting that the inferred C alpha-H...O hydrogen bonds stabilize the helix-helix interactions. In addition to the GXXXG motif, some 808 proteins from the non-redundant PDB set contain at least one alpha-helix with the AXXXA motif (30 +/- 3% greater than expected). Both the GXXXG and AXXXA motifs occur frequently in predicted alpha-helices from 24 fully sequenced genomes. Occurrence of the AXXXA motif is enhanced to a greater extent in thermophiles than in mesophiles, suggesting that helical interaction based on the AXXXA motif may be a common mechanism of thermostability in protein structures. We conclude that the GXXXG sequence motif stabilizes helix-helix interactions in proteins, and that the AXXXA sequence motif also stabilizes the folded state of proteins.  相似文献   
25.
26.
Wild-type plastocyanin from the cyanobacterium Synechocystis sp. PCC 6803 does not form any kinetically detectable transient complex with Photosystem I (PS I) during electron transfer, but the D44R/D47R double mutant of copper protein does [De la Cerda et al. (1997) Biochemistry 36: 10125–10130]. To identify the PS I component that is involved in the complex formation with the D44R/D47R plastocyanin, the kinetic efficiency of several PS I mutants, including a PsaF–PsaJ-less PS I and deletion mutants in the lumenal H and J loops of PsaB, were analyzed by laser flash absorption spectroscopy. The experimental data herein suggest that some of the negative charges at the H loop of PsaB are involved in electrostatic repulsions with mutant plastocyanin. Mutations in the J loop demonstrate that this region of PsaB is also critical. The interaction site of PS I is thus not as defined as first expected but much broader, thereby revealing how complex the evolution of intermolecular electron transfer mechanisms in photosynthesis has been. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
27.
28.
Active pharmaceutical ingredient for biotechnology-based drugs, commonly known as drug substance (DS), is often stored frozen for longer shelf-life. Freezing DS enhances stability by slowing down reaction rates that lead to protein instability, minimizes the risk of microbial growth, and eliminates the risk of transport-related stress. High density polyethylene bottles are commonly used for storing monoclonal antibody DS due to good mechanical stress/strain resistant properties even at low temperatures. Despite the aforementioned advantages for frozen storage of DS, this is not devoid of risks. Proteins are known to undergo ice-water surface denaturation, cryoconcentration, and cold denaturation during freezing. A systematic investigation was performed to better understand the protein and solute distribution along with potential of aggregate formation during freeze and thaw process. A significant solute and protein concentration gradient was observed for both frozen and thawed DS bottles. In case of thawed DS, cryoconcentration was localized in the bottom layer and a linear increase in concentration as a function of liquid depth was observed. On the other hand, for frozen DS, a "bell shaped" cryoconcentration distribution was observed between the bottom layers and centre position. A cryoconcentration of almost three-fold was observed for frozen DS in the most concentrated part when freezing was conducted at -20 and -40 °C and 2.5-fold cryoconcentration was observed in the thawed DS before mixing. The information obtained in this study is critical to design freeze thaw experiments, storage condition determination, and process improvement in manufacturing environment.  相似文献   
29.
Atrazine is one of the most environmentally prevalent s-triazine-ring herbicides. The widespread use of atrazine and its toxicity necessitates search for remediation technology. As atrazine is still used in India as a major herbicide, exploration of atrazine-degrading bacterial community is of immense importance. Considering lack of reports on well characterized atrazine-degrading bacterial cultures from India and wide diversity and density of microorganisms in rhizosphere, soil sample from rhizosphere of atrazine-resistant plant was studied. Arthrobacter sp. strain isolated in this investigation utilizes atrazine as the sole nitrogen source. In addition, the bacterium degrades other triazines such as ametryn, cyanizine, propazine and simazine. PCR analysis confirms the presence of atzBCD and triazine hydrolase (trzN) genes on chromosomal DNA. Sequencing of the trzN gene reveals high sequence similarity with trzN from Nocardioides sp. C190. An inducible and intracellular atrazine chlorohydrolase enzyme was isolated and partially purified from this isolate. This study confirms the presence of atrazine-degrading microbial population in Indian soils and could be used efficiently for remediation of contaminated soils. Presence of trzN gene indicates possible presence of bacterial community with more efficient and novel enzymatic capabilities. Comparison of enzyme and gene structure of this isolate with other geographically distinct atrazine-degrading strains will help us in the better understanding of gene transfer and evolution.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号