首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   452篇
  免费   37篇
  2022年   5篇
  2021年   5篇
  2020年   4篇
  2018年   11篇
  2017年   7篇
  2016年   11篇
  2015年   12篇
  2014年   18篇
  2013年   19篇
  2012年   26篇
  2011年   29篇
  2010年   17篇
  2009年   17篇
  2008年   20篇
  2007年   26篇
  2006年   24篇
  2005年   15篇
  2004年   19篇
  2003年   21篇
  2002年   13篇
  2001年   16篇
  2000年   9篇
  1999年   9篇
  1998年   9篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1992年   10篇
  1991年   7篇
  1990年   3篇
  1989年   9篇
  1988年   10篇
  1987年   5篇
  1986年   5篇
  1985年   8篇
  1984年   5篇
  1983年   2篇
  1981年   3篇
  1980年   4篇
  1977年   4篇
  1975年   3篇
  1972年   3篇
  1971年   2篇
  1970年   3篇
  1968年   2篇
  1966年   2篇
  1964年   2篇
  1962年   3篇
排序方式: 共有489条查询结果,搜索用时 15 毫秒
441.
442.
443.
444.
The recent discovery of Li‐excess cation‐disordered rock salt cathodes has greatly enlarged the design space of Li‐ion cathode materials. Evidence of facile lattice fluorine substitution for oxygen has further provided an important strategy to enhance the cycling performance of this class of materials. Here, a group of Mn3+–Nb5+‐based cation‐disordered oxyfluorides, Li1.2Mn3+0.6+0.5xNb5+0.2?0.5xO2?xFx (x = 0, 0.05, 0.1, 0.15, 0.2) is investigated and it is found that fluorination improves capacity retention in a very significant way. Combining spectroscopic methods and ab initio calculations, it is demonstrated that the increased transition‐metal redox (Mn3+/Mn4+) capacity that can be accommodated upon fluorination reduces reliance on oxygen redox and leads to less oxygen loss, as evidenced by differential electrochemical mass spectroscopy measurements. Furthermore, it is found that fluorine substitution also decreases the Mn3+‐induced Jahn–Teller distortion, leading to an orbital rearrangement that further increases the contribution of Mn‐redox capacity to the overall capacity.  相似文献   
445.
This study reports on the antifungal activities of statins combined with an antifungal compound secreted by Penicillium chrysogenum, PAF. Several species belonging in the class Zygomycetes are considered to be agents of human or animal mycoses; other species have significance as postharvest plant pathogens. In the present work, four species (Rhizopus stolonifer, Mortierella wolfii, Syncephalastrum racemosum and Mycotypha africana) that exhibited different sensitivities to lovastatin and PAF in previous experiments were investigated. The efficiencies with which four statins (lovastatin, simvastatin, rosuvastatin and atorvastatin) inhibited sporangiospore germination in the absence or in the presence of a constant concentration of PAF were studied. PAF and lovastatin acted synergistically on the sporangiospore germination of Mycotypha africana, and similar effects of the combinations PAF-rosuvastatin and PAF-atorvastatin were observed on S. racemosum.  相似文献   
446.

Background

Genome-wide sensitivity screens in yeast have been immensely popular following the construction of a collection of deletion mutants of non-essential genes. However, the auxotrophic markers in this collection preclude experiments on minimal growth medium, one of the most informative metabolic environments. Here we present quantitative growth analysis for mutants in all 4,772 non-essential genes from our prototrophic deletion collection across a large set of metabolic conditions.

Results

The complete collection was grown in environments consisting of one of four possible carbon sources paired with one of seven nitrogen sources, for a total of 28 different well-defined metabolic environments. The relative contributions to mutants'' fitness of each carbon and nitrogen source were determined using multivariate statistical methods. The mutant profiling recovered known and novel genes specific to the processing of nutrients and accurately predicted functional relationships, especially for metabolic functions. A benchmark of genome-scale metabolic network modeling is also given to demonstrate the level of agreement between current in silico predictions and hitherto unavailable experimental data.

Conclusions

These data address a fundamental deficiency in our understanding of the model eukaryote Saccharomyces cerevisiae and its response to the most basic of environments. While choice of carbon source has the greatest impact on cell growth, specific effects due to nitrogen source and interactions between the nutrients are frequent. We demonstrate utility in characterizing genes of unknown function and illustrate how these data can be integrated with other whole-genome screens to interpret similarities between seemingly diverse perturbation types.  相似文献   
447.
The development of antigen arrays has provided researchers with great tools to identify reactivities against self or foreign antigens from body fluids. Yet, these approaches mostly do not address antibody isotypes and their effector functions even though these are key points for a more detailed understanding of disease processes. Here, we present a bead array-based assay for a multiplexed determination of antigen-specific antibody levels in parallel with their properties for complement activation. We measured the deposition of C3 fragments from serum samples to reflect the degree of complement activation via all three complement activation pathways. We utilized the assay on a bead array containing native and citrullinated peptide antigens to investigate the levels of IgG, IgM and IgA autoantibodies along with their complement activating properties in serum samples of 41 rheumatoid arthritis patients and 40 controls. Our analysis revealed significantly higher IgG reactivity against the citrullinated fibrinogen β and filaggrin peptides as well as an IgA reactivity that was exclusive for citrullinated fibrinogen β peptide and C3 deposition in rheumatoid arthritis patients. In addition, we characterized the humoral immune response against the viral EBNA-1 antigen to demonstrate the applicability of this assay beyond autoimmune conditions. We observed that particular buffer compositions were demanded for separate measurement of antibody reactivity and complement activation, as detection of antigen-antibody complexes appeared to be masked due to C3 deposition. We also found that rheumatoid factors of IgM isotype altered C3 deposition and introduced false-positive reactivities against EBNA-1 antigen. In conclusion, the presented bead-based assay setup can be utilized to profile antibody reactivities and immune-complex induced complement activation in a high-throughput manner and could facilitate the understanding and diagnosis of several diseases where complement activation plays role in the pathomechanism.  相似文献   
448.
About 8% of the adult population is taking angiotensin-converting enzyme (ACE) inhibitors to treat cardiovascular disease including hypertension, myocardial infarction and heart failure. These drugs decrease mortality by up to one-fifth in these patients. We and others have reported previously that endogenous inhibitory substances suppress serum ACE activity, in vivo, similarly to the ACE inhibitor drugs. Here we have made an effort to identify this endogenous ACE inhibitor substance. ACE was crosslinked with interacting proteins in human sera. The crosslinked products were immunoprecipitated and subjected to Western blot. One of the crosslinked products was recognized by both anti-ACE and anti-HSA (human serum albumin) antibodies. Direct ACE-HSA interaction was confirmed by binding assays using purified ACE and HSA. HSA inhibited human purified (circulating) and human recombinant ACE with potencies (IC50) of 5.7±0.7 and 9.5±1.1 mg/mL, respectively. Effects of HSA on the tissue bound native ACE were tested on human saphenous vein samples. Angiotensin I evoked vasoconstriction was inhibited by HSA in this vascular tissue (maximal force with HSA: 6.14±1.34 mN, without HSA: 13.54±2.63 mN), while HSA was without effects on angiotensin II mediated constrictions (maximal force with HSA: 18.73±2.17 mN, without HSA: 19.22±3.50 mN). The main finding of this study is that HSA was identified as a potent physiological inhibitor of the ACE. The enzymatic activity of ACE appears to be almost completely suppressed by HSA when it is present in its physiological concentration. These data suggest that angiotensin I conversion is limited by low physiological ACE activities, in vivo.  相似文献   
449.
450.
Prolonged Ca(2+) stimulations often result in a decrease in contractile force of isolated, demembranated human ventricular cardiomyocytes, whereas intact cells are likely to be protected from this deterioration. We hypothesized that cytosolic protein kinase C (PKC) contributes to this protection. Prolonged contracture (10 min) of demembranated human cardiomyocytes at half-maximal Ca(2+) resulted in a 37 +/- 5% reduction of active force (p < 0.01), whereas no decrease (2 +/- 3% increase) was observed in the presence of the cytosol (reconstituted myocytes). The PKC inhibitors GF 109203X and G? 6976 (10 micromol/liter) partially antagonized the cytosol-mediated protection (15 +/- 5 and 9 +/- 2% decrease in active force, p < 0.05). Quantitation of PKC isoform expression revealed the dominance of the Ca(2+)-dependent PKCalpha over PKCdelta and PKCepsilon (189 +/- 31, 7 +/- 3, and 7 +/- 2 ng/mg protein, respectively). Ca(2+) stimulations of reconstituted human cardiomyocytes resulted in the translocation of endogenous PKCalpha, but not PKCbeta1, delta, and epsilon from the cytosol to the contractile system (PKCalpha association: control, 5 +/- 3 arbitrary units; +Ca(2+), 39 +/- 8 arbitrary units; p < 0.01, EC(50,Ca) = 645 nmol/liter). One of the PKCalpha-binding proteins were identified as the thin filament regulatory protein cardiac troponin I (TnI). Finally, the Ca(2+)-dependent interaction between PKCalpha and TnI was confirmed using purified recombinant proteins (binding without Ca(2+) was only 28 +/- 18% of that with Ca(2+)). Our data suggest that PKCalpha translocates to the contractile system and anchors to TnI in a Ca(2+)-dependent manner in the human heart, contributing to the maintenance of contractile force.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号