The compliance of the proximal aortic wall is a major determinant of cardiac afterload. Aortic compliance is often estimated based on cross-sectional area changes over the pulse pressure, under the assumption of a negligible longitudinal stretch during the pulse. However, the proximal aorta is subjected to significant axial stretch during cardiac contraction. In the present study, we sought to evaluate the importance of axial stretch on compliance estimation by undertaking both an in silico and an in vivo approach. In the computational analysis, we developed a 3-D finite element model of the proximal aorta and investigated the discrepancy between the actual wall compliance to the value estimated after neglecting the longitudinal stretch of the aorta. A parameter sensitivity analysis was further conducted to show how increased material stiffness and increased aortic root motion might amplify the estimation errors (discrepancies between actual and estimated distensibility ranging from − 20 to − 62%). Axial and circumferential aortic deformation during ventricular contraction was also evaluated in vivo based on MR images of the aorta of 3 healthy young volunteers. The in vivo results were in good qualitative agreement with the computational analysis (underestimation errors ranging from − 26 to − 44%, with increased errors reflecting higher aortic root displacement). Both the in silico and in vivo findings suggest that neglecting the longitudinal strain during contraction might lead to severe underestimation of local aortic compliance, particularly in the case of women who tend to have higher aortic root motion or in subjects with stiff aortas.
Fresh minimally processed shrimps were stored under modified atmosphere packaging (60% CO2:40% N2 for MAP A and 92.9% N2:5.1% CO2:2% O2 for MAP B) for 5 days at 3 °C. Total mesophiles, H2S forming bacteria, Pseudomonas spp., Brochothrix thermosphacta, firmness, color and sensory parameters were investigated throughout the whole time of the experiment. During storage period samples stored under MAP B managed to retain firmness values close to the initial values. All microbial populations growth was suppressed by the presence of MAP A. Samples stored under MAP B managed to maintain their firmness values close to the initial ones while MAP A samples were significantly less firm (p < 0.05). 相似文献
Pathological features of chronic obstructive pulmonary disease (COPD) include lung vascular remodeling and angiogenesis. Angiopoietin-1 (Ang-1), is an essential mediator of angiogenesis by establishing vascular integrity, whereas angiopoietin-2 (Ang-2) acts as its natural inhibitor. We determined the levels of angiopoietins in sputum supernatants of patients with COPD and investigated their possible association with mediators and cells involved in the inflammatory and remodeling process. Fifty-nine patients with COPD, 25 healthy smokers and 20 healthy non-smokers were studied. All subjects underwent lung function tests, sputum induction for cell count identification and Ang-1, Ang-2, VEGF, TGF-β1, MMP-2, LTB4, IL-8, albumin measurement in sputum supernatants. Airway vascular permeability (AVP) index was also assessed. Ang-2 levels were significantly higher in patients with COPD compared to healthy smokers and healthy non-smokers [median, interquartile ranges pg/ml, 267 (147-367) vs. 112 (67-171) and 98 (95-107), respectively; p<0.001]. Regression analysis showed a significant association between Ang-2 levels and AVP index, VEGF, IL-8 and MMP-2 levels in COPD, the strongest being with VEGF. Our results indicate that induced sputum Ang-2 levels are higher in COPD compared to healthy smokers and healthy non-smokers. Moreover, Ang-2 is associated with AVP, IL-8, MMP-2, and VEGF, indicating a possible role for Ang-2 in the pathogenesis of the disease. 相似文献
Remote ischemic preconditioning (RIPC) has been applied in paediatric cardiac surgery. We have demonstrated that RIPC induces a proteomic response in plasma of healthy volunteers. We tested the hypothesis that RIPC modifies the proteomic response in children undergoing Tetralogy of Fallot (TOF) repair.
Methods and Results
Children (n=40) were randomized to RIPC and control groups. Blood was sampled at baseline, after cardiopulmonary bypass (CPB) and 6, 12 and 24h post-CPB. Plasma was analysed by liquid chromatography mass spectrometry (LC-MS) in an untargeted approach. Peptides demonstrating differential expression (p<0.01) were subjected to tandem LC-MS/MS and protein identification. Corresponding proteins were identified using the NCBI protein database. There was no difference in age (7.3±3.5vs6.8±3.6 months)(p=0.89), weight (7.7±1.8vs7.5±1.9 kg)(p=0.71), CPB time (104±7vs94±7 min)(p=0.98) or aortic cross-clamp time (83±22vs75±20 min)(p=0.36). No peptides were differentially expressed at baseline or immediately after CPB. There were 48 peptides with higher expression in the RIPC group 6h post-CPB. This was no longer evident at 12 or 24h, with one peptide down-regulated in the RIPC group. The proteins identified were: inter-alpha globulin inhibitor (42.0±11.8 vs 820.8±181.1, p=0.006), fibrinogen preproprotein (59.3±11.2 vs 1192.6±278.3, p=0.007), complement-C3 precursor (391.2±160.9 vs 5385.1±689.4, p=0.0005), complement C4B (151.5±17.8 vs 4587.8±799.2, p=0.003), apolipoprotein B100 (53.4±8.3 vs 1364.5±278.2, p=0.005) and urinary proteinase inhibitor (358.6±74.9 vs 5758.1±1343.1, p=0.009). These proteins are involved in metabolism, haemostasis, immunity and inflammation.
Conclusions
We provided the first comprehensive analysis of RIPC-induced proteomic changes in children undergoing surgery. The proteomic changes peak 6h post-CPB and return to baseline within 24h of surgery.
Agricultural land abandonment is a major conservation issue when it comes to remote Mediterranean mountainous ecosystems. Although its impact on taxa such as birds or butterflies is well known, knowledge remains poor for less studied invertebrate taxa such as spiders. We sampled ground spiders (Gnaphosidae, Liocranidae, Miturgidae and Corrinidae) in 20 randomly selected sites (1 km × 1 km; 15 pitfall traps) that well depicted a land abandonment gradient, in terms of four forest encroachment classes. Our results showed a negative effect of land abandonment on ground spider species richness and diversity (Simpson index), pinpointing that forested habitats with more than 75 % woody vegetation cover are relatively poor. We also provide evidence for the beneficial role of low intensity grazing (0.4–4 livestock units/km2) for ground spider abundance. Community analysis revealed four distinct clusters of co-occurring species, while Generalized Linear Models at cluster and species level showed the definitive role of forest encroachment, and secondarily of other environmental factors such as humidity, elevation and longitude, in regulating species distribution patterns. Conservation measures for ground spider diversity maintenance should focus on promoting traditional agricultural practices, including small-scale cultivation and mild livestock grazing in order to preserve open and semi-open rural mosaics. 相似文献
Terrestrial predators on marine shores benefit from the inflow of organisms and matter from the marine ecosystem, often causing very high predator densities and indirectly affecting the abundance of other prey species on shores. This indirect effect may be particularly strong if predators shift diets between seasons. We therefore quantified the seasonal variation in diet of two wolf spider species that dominate the shoreline predator community, using molecular gut content analyses with general primers to detect the full prey range. Across the season, spider diets changed, with predominantly terrestrial prey from May until July and predominantly marine prey (mainly chironomids) from August until October. This pattern coincided with a change in the spider age and size structure, and prey abundance data and resource selection analyses suggest that the higher consumption of chironomids during autumn is due to an ontogenetic diet shift rather than to variation in prey abundance. The analyses suggested that small dipterans with a weak flight capacity, such as Chironomidae, Sphaeroceridae, Scatopsidae and Ephydridae, were overrepresented in the gut of small juvenile spiders during autumn, whereas larger, more robust prey, such as Lepidoptera, Anthomyidae and Dolichopodidae, were overrepresented in the diet of adult spiders during spring. The effect of the inflow may be that the survival and growth of juvenile spiders is higher in areas with high chironomid abundances, leading to higher densities of adult spiders and higher predation rates on the terrestrial prey next spring. 相似文献