首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   20篇
  226篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2016年   14篇
  2015年   12篇
  2014年   8篇
  2013年   10篇
  2012年   8篇
  2011年   8篇
  2010年   7篇
  2009年   7篇
  2008年   4篇
  2007年   9篇
  2006年   6篇
  2005年   13篇
  2004年   9篇
  2003年   11篇
  2002年   5篇
  2001年   11篇
  2000年   9篇
  1999年   7篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1968年   1篇
  1930年   1篇
  1921年   2篇
排序方式: 共有226条查询结果,搜索用时 15 毫秒
11.
IntroductionInflammatory destructive arthritis, like rheumatoid arthritis (RA), is characterized by invasion of synovial fibroblasts (SF) into the articular cartilage and erosion of the underlying bone, leading to progressive joint destruction. Because fibroblast activation protein alpha (FAP) has been associated with cell migration and cell invasiveness, we studied the function of FAP in joint destruction in RA.MethodsExpression of FAP in synovial tissues and fibroblasts from patients with osteoarthritis (OA) and RA as well as from wild-type and arthritic mice was evaluated by immunohistochemistry, fluorescence microscopy and polymerase chain reaction (PCR). Fibroblast adhesion and migration capacity was assessed using cartilage attachment assays and wound-healing assays, respectively. For in vivo studies, FAP-deficient mice were crossed into the human tumor necrosis factor transgenic mice (hTNFtg), which develop a chronic inflammatory arthritis. Beside clinical assessment, inflammation, cartilage damage, and bone erosion were evaluated by histomorphometric analyses.ResultsRA synovial tissues demonstrated high expression of FAP whereas in OA samples only marginal expression was detectable. Consistently, a higher expression was detected in arthritis SF compared to non-arthritis OA SF in vitro. FAP-deficiency in hTNFtg mice led to less cartilage degradation despite unaltered inflammation and bone erosion. Accordingly, FAP−/− hTNFtg SF demonstrated a lower cartilage adhesion capacity compared to hTNFtg SF in vitro.ConclusionsThese data point to a so far unknown role of FAP in the attachment of SF to cartilage, promoting proteoglycan loss and subsequently cartilage degradation in chronic inflammatory arthritis.  相似文献   
12.
13.
14.
Synovial fibroblasts (SFs) have become a major target for ex vivo gene transfer in rheumatoid arthritis (RA), but efficient transduction of RA-SFs still is a major problem. The low proliferation rate and heterogeneity of RA-SFs, together with their lack of highly specific surface receptors, have hampered a more extensive application of this technique. Improving transduction protocols with conventional viral vectors, therefore, as well as developing novel strategies, such as alternative target cells, and novel delivery systems constitute a major challenge. Recent progress in this field will lead to the achievement of high transgene expression, and will facilitate the use of gene transfer in human trials.  相似文献   
15.
Feathers are dead integumentary structures that are prone to damage and thus show gradual degradation over the course of a year. This loss of quality might have negative fitness consequences. Feather‐degrading bacteria are some of the most prevalent feather‐degrading organisms, yet the relationship between feather‐degrading bacteria load and flight feather quality has rarely been assessed. We studied this relationship in free‐living House Sparrows during breeding and non‐breeding annual lifecycle stages. We also considered the size of the uropygial gland, given the antimicrobial function of its secretions, and the effect of body condition. The number of feather holes was positively associated with feather‐degrading bacteria load and was negatively related to uropygial gland size and body condition during the breeding season in both sexes. In the non‐breeding season we found the same relationships, but only in females. The degree of feather wear was unrelated to any of the variables measured during the breeding season, whereas it was negatively associated with uropygial gland size and positively with feather‐degrading bacteria load in the non‐breeding season, but only in females. Our results suggest that feather‐degrading bacteria may induce the formation of feather holes, but play only a minor role in the abrasion of flight feathers.  相似文献   
16.
The phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signaling pathway is an important mediator of growth factor-dependent survival of mammalian cells. A variety of targets of the Akt protein kinase have been implicated in cell survival, including the protein kinase glycogen synthase kinase 3beta (GSK-3beta). One of the targets of GSK-3beta is translation initiation factor 2B (eIF2B), linking global regulation of protein synthesis to PI 3-kinase/Akt signaling. Because of the central role of protein synthesis, we have investigated the involvement of eIF2B, which is inhibited as a result of GSK-3beta phosphorylation, in programmed cell death. We demonstrate that expression of eIF2B mutants lacking the GSK-3beta phosphorylation or priming sites is sufficient to protect both Rat-1 and PC12 cells from apoptosis induced by overexpression of GSK-3beta, inhibition of PI 3-kinase, or growth factor deprivation. Consistent with these effects on cell survival, expression of nonphosphorylatable eIF2B prevented inhibition of protein synthesis following treatment of cells with the PI 3-kinase inhibitor LY294002. Conversely, cycloheximide induced apoptosis of PC12 and Rat-1 cells, further indicating that protein synthesis was required for cell survival. Inhibition of translation resulting from treatment with cycloheximide led to the release of cytochrome c from mitochondria, similar to the effects of inhibition of PI 3-kinase. Expression of nonphosphorylatable eIF2B prevented cytochrome c release resulting from PI 3-kinase inhibition but did not affect cytochrome c release or apoptosis induced by cycloheximide. Regulation of translation resulting from phosphorylation of eIF2B by GSK-3beta thus appears to contribute to the control of cell survival by the PI 3-kinase/Akt signaling pathway, acting upstream of mitochondrial cytochrome c release.  相似文献   
17.
Motile extracts have been prepared from Dictyostelium discoideum by homogenization and differential centrifugation at 4 degrees C in a stabilization solution (60). These extracts gelled on warming to 25 degrees Celsius and contracted in response to micromolar Ca++ or a pH in excess of 7.0. Optimal gelation occurred in a solution containing 2.5 mM ethylene glycol-bis (β-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA), 2.5 mM piperazine-N-N'-bis [2-ethane sulfonic acid] (PIPES), 1 mM MgC1(2), 1 mM ATP, and 20 mM KCI at ph 7.0 (relaxation solution), while micromolar levels of Ca++ inhibited gelation. Conditions that solated the gel elicited contraction of extracts containing myosin. This was true regardless of whether chemical (micromolar Ca++, pH >7.0, cytochalasin B, elevated concentrations of KCI, MgC1(2), and sucrose) or physical (pressure, mechanical stress, and cold) means were used to induce solation. Myosin was definitely required for contraction. During Ca++-or pH-elicited contraction: (a) actin, myosin, and a 95,000-dalton polypeptide were concentrated in the contracted extract; (b) the gelation activity was recovered in the material sqeezed out the contracting extract;(c) electron microscopy demonstrated that the number of free, recognizable F-actin filaments increased; (d) the actomyosin MgATPase activity was stimulated by 4- to 10-fold. In the absense of myosin the Dictyostelium extract did not contract, while gelation proceeded normally. During solation of the gel in the absense of myosin: (a) electron microscopy demonstrated that the number of free, recognizable F- actin filaments increased; (b) solation-dependent contraction of the extract and the Ca++-stimulated MgATPase activity were reconstituted by adding puried Dictyostelium myosin. Actin purified from the Dictyostelium extract did not gel (at 2 mg/ml), while low concentrations of actin (0.7-2 mg/ml) that contained several contaminating components underwent rapid Ca++ regulated gelation. These results indicated : (a) gelation in Dictyostelium extracts involves a specific Ca++-sensitive interaction between actin and several other components; (b) myosin is an absolute requirement for contraction of the extract; (c) actin-myosin interactions capable of producing force for movement are prevented in the gel, while solation of the gel by either physical or chemical means results in the release of F-actin capable of interaction with myosin and subsequent contraction. The effectiveness of physical agents in producting contraction suggests that the regulation of contraction by the gel is structural in nature.  相似文献   
18.

Background

Highly pathogenic avian influenza (HPAI) H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease.

Aim

To study influenza A (H5N1) virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease.

Methods

We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces.

Results

We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our data suggests that viremia, secondary to, for example, gastro-intestinal infection, can potentially lead to infection of the lung. HPAI H5N1 virus was a more potent inducer of cytokines (e.g. IP-10, RANTES, IL-6) in comparison to H1N1 virus in alveolar epithelial cells, and these virus-induced chemokines were secreted onto both the apical and basolateral aspects of the polarized alveolar epithelium.

Conclusion

The predilection of viruses for different routes of entry and egress from the infected cell is important in understanding the pathogenesis of influenza H5N1 infection and may help unravel the pathogenesis of human H5N1 disease.  相似文献   
19.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号