首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6670篇
  免费   414篇
  国内免费   1篇
  2023年   22篇
  2022年   54篇
  2021年   93篇
  2020年   77篇
  2019年   87篇
  2018年   134篇
  2017年   110篇
  2016年   189篇
  2015年   270篇
  2014年   360篇
  2013年   500篇
  2012年   574篇
  2011年   510篇
  2010年   336篇
  2009年   290篇
  2008年   436篇
  2007年   382篇
  2006年   384篇
  2005年   334篇
  2004年   350篇
  2003年   351篇
  2002年   318篇
  2001年   70篇
  2000年   69篇
  1999年   64篇
  1998年   64篇
  1997年   63篇
  1996年   58篇
  1995年   45篇
  1994年   60篇
  1993年   44篇
  1992年   40篇
  1991年   32篇
  1990年   26篇
  1989年   22篇
  1988年   20篇
  1987年   20篇
  1986年   11篇
  1985年   19篇
  1984年   17篇
  1983年   23篇
  1982年   15篇
  1981年   29篇
  1980年   21篇
  1979年   14篇
  1977年   17篇
  1976年   6篇
  1975年   7篇
  1974年   9篇
  1969年   6篇
排序方式: 共有7085条查询结果,搜索用时 31 毫秒
901.
Vasculogenesis, the formation of blood vessels in embryonic or fetal tissue mediated by immature vascular cells (i.e., angioblasts), is poorly understood. Here we report a summary of our recent studies on the identification of a population of vascular progenitor cells (VPCs) in human fetal aorta. These undifferentiated mesenchymal cells co-express endothelial and myogenic markers (CD133+, CD34+, KDR+, desmin+) and are localized in outer layer of the aortic stroma of 11–12 weeks old human fetuses. Under stimulation with VEGF-A or PDGF-BB, VPCs give origin to a mixed population of mature endothelial and mural cells, respectively. When embedded in a three-dimensional collagen gel, VPCs organize into cohesive cellular cords that resembled mature vascular structures. The therapeutic efficacy of a small number of VPCs transplanted into ischemic limb muscle was demonstrated in immunodeficient mice. Investigation of the effect of VPCs on experimental heart ischemia and on diabetic ischemic ulcers in mice is in progress and seems to confirm their efficacy. On the whole, fetal aorta represents an important source for the investigation of phenotypic and functional features of human vascular progenitor cells.  相似文献   
902.
A total of 41 strains of lactic acid bacteria (LAB) isolated from durum wheat sourdoughs used to produce Cornetto di Matera bread, were identified by SDS-PAGE of whole cell proteins (WCP) and screened for acid production ability, antimicrobial activity and exopolysaccharide (EPS) production. The isolates were identified as Lactobacillus plantarum (49%), Leuconostoc mesenteroides (17%), Lactobacillus curvatus (15%), Lactobacillus paraplantarum (12%), Weissella cibaria (5%) and Lactobacillus pentosus (2%). Several strains of Lb. plantarum and Leuc. mesenteroides showed a high acid production ability. The antagonistic activity was tested using an agar-spot deferred antagonism assay against a set of five indicators. The species had different profiles of inhibition. Lb. plantarum had the largest spectrum of inhibition, while no isolates of W. cibaria and Leuc. mesenteroides showed antimicrobial activity. No strains had antimicrobial activity against Bacillus cereus. The inhibitory activity of five strains was confirmed to be sensitive to proteolytic enzymes and thus potentially due to bacteriocin production. All Leuc. mesenteroides and W. cibaria strains produced EPS from sucrose. Some Lb. plantarum and Lb. paraplantarum strains produced EPS from different sugars in solid media. EPS production in liquid media was different within the species, with the highest production in liquid media containing glucose and maltose. A defined strain starter culture (W. cibaria DBPZ1006, Lb. plantarum DBPZ1015 and S. cerevisiae MTG10) was selected on the basis of technological properties and tested in model sourdough fermentations.  相似文献   
903.
Conformational fluctuations of enzymes may play an important role for substrate recognition and/or catalysis, as it has been suggested in the case of the protease enzymatic superfamily. Unfortunately, theoretically addressing this issue is a problem of formidable complexity, as the number of the involved degrees of freedom is enormous: indeed, the biological function of a protein depends, in principle, on all its atoms and on the surrounding water molecules. Here we investigated a membrane protease enzyme, the OmpT from Escherichia coli, by a hybrid molecular mechanics/coarse-grained approach, in which the active site is treated with the GROMOS force field, whereas the protein scaffold is described with a Go-model. The method has been previously tested against results obtained with all-atom simulations. Our results show that the large-scale motions and fluctuations of the electric field in the microsecond timescale may impact on the biological function and suggest that OmpT employs the same catalytic strategy as aspartic proteases. Such a conclusion cannot be drawn within the 10- to 100-ns timescale typical of current molecular dynamics simulations. In addition, our studies provide a structural explanation for the drop in the catalytic activity of two known mutants (S99A and H212A), suggesting that the coarse-grained approach is a fast and reliable tool for providing structure/function relationships for both wild-type OmpT and mutants.  相似文献   
904.
Cells generate mechanical force to organize the extracellular matrix (ECM) and drive important developmental and reparative processes. Likewise, tumor cells invading into three-dimensional (3D) matrices remodel the ECM microenvironment. Importantly, we previously reported a distinct radial reorganization of the collagen matrix surrounding tumors that facilitates local invasion. Here we describe a mechanism by which cells utilize contractility events to reorganize the ECM to provide contact guidance that facilitates 3D migration. Using novel assays to differentially organize the collagen matrix we show that alignment of collagen perpendicular to the tumor-explant boundary promotes local invasion of both human and mouse mammary epithelial cells. In contrast, organizing the collagen matrix to mimic the ECM organization associated with noninvading regions of tumors suppresses 3D migration/invasion. Moreover, we demonstrate that matrix reorganization is contractility-dependent and that the Rho/Rho kinase pathway is necessary for collagen alignment to provide contact guidance. Yet, if matrices are prealigned, inhibiting neither Rho nor Rho kinase inhibits 3D migration, which supports our conclusion that Rho-mediated matrix alignment is an early step in the invasion process, preceding and subsequently facilitating 3D migration.  相似文献   
905.
The single photon response in vertebrate phototransduction is highly reproducible despite a number of random components of the activation cascade, including the random activation site, the random walk of an activated receptor, and its quenching in a random number of steps. Here we use a previously generated and tested spatiotemporal mathematical and computational model to identify possible mechanisms of variability reduction. The model permits one to separate the process into modules, and to analyze their impact separately. We show that the activation cascade is responsible for generation of variability, whereas diffusion of the second messengers is responsible for its suppression. Randomness of the activation site contributes at early times to the coefficient of variation of the photoresponse, whereas the Brownian path of a photoisomerized rhodopsin (Rh*) has a negligible effect. The major driver of variability is the turnoff mechanism of Rh*, which occurs essentially within the first 2-4 phosphorylated states of Rh*. Theoretically increasing the number of steps to quenching does not significantly decrease the corresponding coefficient of variation of the effector, in agreement with the biochemical limitations on the phosphorylated states of the receptor. Diffusion of the second messengers in the cytosol acts as a suppressor of the variability generated by the activation cascade. Calcium feedback has a negligible regulatory effect on the photocurrent variability. A comparative variability analysis has been conducted for the phototransduction in mouse and salamander, including a study of the effects of their anatomical differences such as incisures and photoreceptors geometry on variability generation and suppression.  相似文献   
906.
An anaerobic microcosm set up with aquifer material from a 1,1,2,2-tetrachloroethane (TeCA) contaminated site and amended with butyrate showed a complete TeCA dechlorination to ethene. A structure analysis of the microbial community was performed by fluorescence in situ hybridization (FISH) with already available and on purpose designed probes from sequences retrieved through 16S rDNA clone library construction. FISH was chosen as identification tool to evaluate in situ whether the retrieved sequences belong to primary bacteria responsible for the biodegradative reactions. FISH probes identified up to 80% of total bacteria and revealed the absence or the marginal presence of known TeCA degraders and the abundance of two well-known H(2)-utilizing halorespiring bacteria, Sulfurospirillum (32.4 +/- 8.6% of total bacteria) and Dehalococcoides spp. (14.8 +/- 2.8), thereby providing a strong indication of their involvement in the dechlorination processes. These results were supported by the kinetic and thermodynamic analysis which provided indications that hydrogen was the actual electron donor for TeCA dechlorination. The specific probes, developed in this study, for known dechlorinators (i.e., Geobacter, Dehalobacter, and Sulfurospirillum species) represent a valuable tool for any future in situ bioremediation study as well as a quick and specific investigation tool for tracking their distribution in the field.  相似文献   
907.
We have studied the stability and reassociation behaviour of native molecules of Rapana venosa hemocyanin and its two subunits, termed RvH1 and RvH2. In the presence of different concentrations of Ca(2+) and Mg(2+) ions and pH values, the subunits differ not only in their reassociation behaviour, but also in their formation of helical tubules and multidecamers. RvH1 revealed a greater stability at higher pH values compared to RvH2. Overall, the stability of reassociated RvH and its structural subunits was found to be pH-dependent. The increasing stability of native Hc and its subunits, shown by pH-induced CD transitions (acid and alkaline denaturation), can be explained with the formation of quaternary structure. The absence of a Cotton effect at temperatures 20-40 degrees C in the pH-transition curves of RvH2 indicates that this subunit is stabilized by additional "factors", e.g.: non-ionic/hydrophobic stabilization and interactions of carbohydrate moieties. A similar behaviour was observed for the T-transition curves in a wide pH interval for RvH and its structural subunits. At higher temperatures, many of the secondary structural elements are preserved especially at neutral pH, even at extreme high temperatures above 90 degrees C the protein structures resemble a "globule state".  相似文献   
908.
Cholangiopathies are characterized by the heterogeneous proliferation of different-sized cholangiocytes. Large cholangiocytes proliferate by a cAMP-dependent mechanism. The function of small cholangiocytes may depend on the activation of inositol trisphosphate (IP(3))/Ca(2+)-dependent signaling pathways; however, data supporting this speculation are lacking. Four histamine receptors exist (HRH1, HRH2, HRH3, and HRH4). In several cells: 1) activation of HRH1 increases intracellular Ca(2+) concentration levels; and 2) increased [Ca(2+)](i) levels are coupled with calmodulin-dependent stimulation of calmodulin-dependent protein kinase (CaMK) and activation of cAMP-response element binding protein (CREB). HRH1 agonists modulate small cholangiocyte proliferation by activation of IP(3)/Ca(2+)-dependent CaMK/CREB. We evaluated HRH1 expression in cholangiocytes. Small and large cholangiocytes were stimulated with histamine trifluoromethyl toluidide (HTMT dimaleate; HRH1 agonist) for 24-48 h with/without terfenadine, BAPTA/AM, or W7 before measuring proliferation. Expression of CaMK I, II, and IV was evaluated in small and large cholangiocytes. We measured IP(3), Ca(2+) and cAMP levels, phosphorylation of CaMK I, and activation of CREB (in the absence/presence of W7) in small cholangiocytes treated with HTMT dimaleate. CaMK I knockdown was performed in small cholangiocytes stimulated with HTMT dimaleate before measurement of proliferation and CREB activity. Small and large cholangiocytes express HRH1, CaMK I, and CaMK II. Small (but not large) cholangiocytes proliferate in response to HTMT dimaleate and are blocked by terfenadine (HRH1 antagonist), BAPTA/AM, and W7. In small cholangiocytes, HTMT dimaleate increased IP(3)/Ca(2+) levels, CaMK I phosphorylation, and CREB activity. Gene knockdown of CaMK I ablated the effects of HTMT dimaleate on small cholangiocyte proliferation and CREB activation. The IP(3)/Ca(2+)/CaMK I/CREB pathway is important in the regulation of small cholangiocyte function.  相似文献   
909.
910.
Modelling metapopulations with stochastic membrane systems   总被引:2,自引:0,他引:2  
Metapopulations, or multi-patch systems, are models describing the interactions and the behavior of populations living in fragmented habitats. Dispersal, persistence and extinction are some of the characteristics of interest in ecological studies of metapopulations. In this paper, we propose a novel method to analyze metapopulations, which is based on a discrete and stochastic modelling framework in the area of Membrane Computing. New structural features of membrane systems, necessary to appropriately describe a multi-patch system, are introduced, such as the reduction of the maximal parallel consumption of objects, the spatial arrangement of membranes and the stochastic creation of objects. The role of the additional features, their meaning for a metapopulation model and the emergence of relevant behaviors are then investigated by means of stochastic simulations. Conclusive remarks and ideas for future research are finally presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号