首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5314篇
  免费   360篇
  2024年   4篇
  2023年   20篇
  2022年   66篇
  2021年   98篇
  2020年   46篇
  2019年   79篇
  2018年   117篇
  2017年   94篇
  2016年   153篇
  2015年   219篇
  2014年   274篇
  2013年   409篇
  2012年   456篇
  2011年   437篇
  2010年   274篇
  2009年   206篇
  2008年   343篇
  2007年   340篇
  2006年   319篇
  2005年   318篇
  2004年   281篇
  2003年   229篇
  2002年   244篇
  2001年   55篇
  2000年   48篇
  1999年   57篇
  1998年   53篇
  1997年   38篇
  1996年   43篇
  1995年   39篇
  1994年   30篇
  1993年   41篇
  1992年   28篇
  1991年   15篇
  1990年   17篇
  1989年   16篇
  1988年   15篇
  1987年   16篇
  1986年   14篇
  1985年   12篇
  1984年   21篇
  1983年   14篇
  1982年   6篇
  1981年   15篇
  1980年   9篇
  1979年   7篇
  1978年   6篇
  1977年   7篇
  1971年   3篇
  1965年   3篇
排序方式: 共有5674条查询结果,搜索用时 62 毫秒
991.
The degree of reproductive isolation between Meccus phyllosomus and the remaining five species of the genus Meccus, as well as between Meccus bassolsae and Meccus pallidipennis, Meccus longipennis and Meccus picturatus, was examined. Fertility and the segregation of morphological characteristics were examined in two generations of hybrids from crosses between these species. The percentage of couples with offspring (fertile) was high in the vast majority of sets of crosses, with the exception of that between ♀M. phyllosomus and ♂Meccus mazzottii. In sets of crosses involving M. bassolsae specimens, no first-generation (F1) individuals were morphologically similar to M. bassolsae, but instead shared the morphology of the other parental species. A similar phenomenon was observed in most sets of crosses involving M. phyllosomus. These results indicated that different degrees of reproductive isolation exist among the species of Meccus involved in this study. The biological evidence obtained in this study does not support the proposal that M. bassolsae is a full species. It could indicate that, on the contrary, it should be considered a subspecies of a single polytypic species. The biological evidence does support the proposal that M. phyllosomus is a full species.  相似文献   
992.
993.
Distribution of gluten proteins in bread wheat (Triticum aestivum) grain   总被引:1,自引:0,他引:1  

Background and Aims

Gluten proteins are the major storage protein fraction in the mature wheat grain. They are restricted to the starchy endosperm, which forms white flour on milling, and interact during grain development to form large polymers which form a continuous proteinaceous network when flour is mixed with water to give dough. This network confers viscosity and elasticity to the dough, enabling the production of leavened products. The starchy endosperm is not a homogeneous tissue and quantitative and qualitative gradients exist for the major components: protein, starch and cell wall polysaccharides. Gradients in protein content and composition are the most evident and are of particular interest because of the major role played by the gluten proteins in determining grain processing quality.

Methods

Protein gradients in the starchy endosperm were investigated using antibodies for specific gluten protein types for immunolocalization in developing grains and for western blot analysis of protein extracts from flour fractions obtained by sequential abrasion (pearling) to prepare tissue layers.

Key Results

Differential patterns of distribution were found for the high-molecular-weight subunits of glutenin (HMW-GS) and γ-gliadins when compared with the low-molecular-weight subunits of glutenin (LMW-GS), ω- and α-gliadins. The first two types of gluten protein are more abundant in the inner endosperm layers and the latter more abundant in the subaleurone. Immunolocalization also showed that segregation of gluten proteins occurs both between and within protein bodies during protein deposition and may still be retained in the mature grain.

Conclusions

Quantitative and qualitative gradients in gluten protein composition are established during grain development. These gradients may be due to the origin of subaleurone cells, which unlike other starchy endosperm cells derive from the re-differentiation of aleurone cells, but could also result from the action of specific regulatory signals produced by the maternal tissue on specific domains of the gluten protein gene promoters.  相似文献   
994.
Episodic ataxia type 1 (EA1) is an autosomal dominant disorder characterized by continuous myokymia and episodic attacks of ataxia. Mutations in the gene KCNA1 that encodes the voltage-gated potassium channel Kv1.1 are responsible for EA1. In several brain areas, Kv1.1 coassembles with Kv1.4, which confers N-type inactivating properties to heteromeric channels. It is therefore likely that the rate of inactivation will be determined by the number of Kv1.4 inactivation particles, as set by the precise subunit stoichiometry. We propose that EA1 mutations affect the rate of N-type inactivation either by reduced subunit surface expression, giving rise to a reduced number of Kv1.1 subunits in heterotetramer Kv1.1-Kv1.4 channels, or by reduced affinity for the Kv1.4 inactivation domain. To test this hypothesis, quantified amounts of mRNA for Kv1.4 or Kv1.1 containing selected EA1 mutations either in the inner vestibule of Kv1.1 on S6 or in the transmembrane regions were injected into Xenopus laevis oocytes and the relative rates of inactivation and stoichiometry were determined. The S6 mutations, V404I and V408A, which had normal surface expression, reduced the rate of inactivation by a decreased affinity for the inactivation domain while the mutations I177N in S1 and E325D in S5, which had reduced subunit surface expression, increased the rate of N-type inactivation due to a stoichiometric increase in the number of Kv1.4 subunits.  相似文献   
995.
Direct effects of GLP-1, kinase-mediated, on glucose and lipid metabolism in rat and human extrapancreatic tissues, are amply documented and also changes in type-2 diabetic (T2D) patients. Here, we explored the characteristics of the GLP-1 action and those of its analogs Ex-4 and Ex-9, on muscle glucose transport (GT) and metabolism in human morbid obesity (OB), as compared with normal and T2D subjects. In primary cultured myocytes from OB, GT and glycogen synthase a (GSa) activity values were lower than normal, and comparable to those reported in T2D patients; GT was increased by either GLP-1 or Ex-9 in a more efficient manner than in normal or T2D, up to normal levels; the Ex-4 increasing effect on GSa activity was two times that in normal cells, while Ex-9 failed to modify the enzyme activity. In OB, the control value of all kinases analyzed - PI3K, PKB, MAPKs, and p70s6K - although lower than that in normal or T2D subjects, the cells maintained their response capability to GLP-1, Ex-4, Ex-9 and insulin, with some exceptions. GLP-1 and exendins showed a direct normalizing action in the altered glucose uptake and metabolism in the muscle of obese subjects, which in the case of GLP-1 could account, at least in part, for the reported restoration of the metabolic conditions of these patients after restrictive surgery.  相似文献   
996.
Metastatic cells switch between different modes of migration through supramolecular plasticity mechanism(s) still largely unknown. The aim of the present paper was to clarify some molecular aspects of the epigenetic control of migration of 1833-bone metastatic cells compared to MDA-MB231-parental mammary carcinoma cells. Active c-Src overexpression enhanced 1833-cell spontaneous migration and CXCR4-mediated chemoinvasion toward CXCL12 ligand. Only in metastatic cells, in fact, c-Src seemed to stabilize nuclear CXCR4-protein receptor possibly due to tyrosine phosphorylation, by impairing protein-degradative smear and causing instead an electrophoretic-mobility shift; the cytosolic steady-state level of CXCR4 was enhanced, and the protein appeared also phosphorylated. These findings suggested the triggering of unique signaling pathways in metastasis for homing of breast-cancer cells to congenial environment of specific organs. Microenvironmental stimuli activating c-Src might influence Ets1 binding to CXCR4 promoter and consequent transactivation, as well as CXCR4 post-translational regulatory mechanisms such as phosphorylation. Enhancement of Ets1 activity and CXCR4 induction by c-Src overexpression were prevented by histone deacetylase (HDAC) blockade. In contrast, HDAC inhibition with trichostatin A increased cytosolic phosphorylated CXCR4 expression in MDA-MB231 cells, but Ets1 involvement was practically unneeded. c-Src might be suggested as a bio-marker predicting metastasis sensitivity patterns to HDAC inhibitors. Rationally designed and individualized therapy may become possible as more is learned about the target molecules of HDAC's inhibitory agents and their roles, as undertaken for CXCR4 that is likely to be crucial for homing, angiogenesis and survival in a c-Src-dependent manner in bone-metastatic mammary cells.  相似文献   
997.
Recombinant DNA (rDNA) technologies allow the production of a wide range of peptides, proteins and metabolites from naturally non-producing cells. Since human insulin was the first heterologous compound produced in a laboratory in 1977, rDNA technology has become one of the most important technologies developed in the 20th century. Recombinant protein and metabolites production is a multi-billion dollar market. The development of a new product begins with the choice of the cell factory. The final application of the compound dictates the main criteria that should be taken into consideration: (1) quality, (2) quantity, (3) yield and (4) space time yield of the desired product. Quantity and quality are the most predominant requirements that must be considered for the commercial production of a protein. Quantity and yield are the requirements for the production of a metabolite. Finally, space time yield is crucial for any production process. It therefore becomes clear why the perfect host does not exist yet, and why—despite important advances in rDNA applications in higher eukaryotic cells—microbial biodiversity continues to represent a potential source of attractive cell factories. In this review, we compare the advantages and limitations of the principal yeast and bacterial workhorse systems.  相似文献   
998.
In the present study, we developed a rapid and efficient fluorescence in situ hybridization assay (FISH) in non-embedded tissues of the model plant Catharanthus roseus for co-localizing phytoplasmas and endophytic bacteria, opening new perspectives for studying the interaction between these microorganisms.  相似文献   
999.
The aim of this work was to evaluate the potential use of qualitative volatile patterns produced by Penicillium nordicum to discriminate between ochratoxin A (OTA) producers and non-producer strains on a ham-based medium. Experiments were carried out on a 3% ham medium at two water activities (aw ; 0.995, 0.95) inoculated with P. nordicum spores and incubated at 25°C for up to 14 days. Growing colonies were sampled after 1, 2, 3, 7 and 14 days, placed in 30-ml vials, sealed and the head space analysed using a hybrid sensor electronic nose device. The effect of environmental conditions on growth and OTA production was evaluated based on the qualitative response. However, after 7 days, it was possible to discriminate between strains grown at 0.995 aw, and after 14 days, the OTA producer and non-producer strain and the controls could be discriminated at both aw levels. This study suggests that volatile patterns produced by P. nordicum strains may differ and be used to predict the presence of toxigenic contaminants in ham. This approach could be utilised in ham production as part of a quality assurance system for preventing OTA contamination.  相似文献   
1000.
Neural Crest Cells (NCCs) are transient multipotent migratory cells that derive from the embryonic neural crest which is itself derived from the margin of the neural tube. DNA repair genes are expressed in the early stages of mammalian development to reduce possible replication errors and genotoxic damage. Some birth defects and cancers are due to inappropriate or defective DNA repair machinery, indicating that the proper functioning of DNA repair genes in the early stages of fetal development is essential for maintaining DNA integrity. We performed a genome-wide expression analysis combining laser capture microdissection (LCM) and high-density oligo-microarray of murine NCCs at pre-migratory embryonic days 8.5 (E8.5), and at E13.5, as well as on neural crest-derived cells from the adrenal medulla at postnatal day 90. We found 11 genes involved in DNA repair activity (response to DNA damage stimulus, DNA damage checkpoint, base-excision repair, mismatch repair), over-expressed in the early stages of mouse embryo development. Expression of these 11 genes was very low or undetectable in the differentiated adrenal medulla of the adult mouse. Amongst the 11 genes, 6 had not been previously reported as being over-expressed during mouse embryonic development. High expression of DNA repair genes in enriched NCCs during early embryonic development may contribute to maintaining DNA integrity whilst failure of some of these genes may be associated with the onset of genetic disease and cancer. Our model of enriched murine NCCs and neural crest-derived cells can be used to elucidate the key roles of genes during normal embryonic development and in cancer pathogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号