首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5290篇
  免费   350篇
  5640篇
  2024年   4篇
  2023年   20篇
  2022年   66篇
  2021年   97篇
  2020年   45篇
  2019年   79篇
  2018年   116篇
  2017年   94篇
  2016年   152篇
  2015年   218篇
  2014年   273篇
  2013年   408篇
  2012年   452篇
  2011年   436篇
  2010年   274篇
  2009年   205篇
  2008年   341篇
  2007年   341篇
  2006年   319篇
  2005年   318篇
  2004年   280篇
  2003年   229篇
  2002年   244篇
  2001年   52篇
  2000年   46篇
  1999年   54篇
  1998年   50篇
  1997年   37篇
  1996年   43篇
  1995年   39篇
  1994年   30篇
  1993年   41篇
  1992年   28篇
  1991年   15篇
  1990年   17篇
  1989年   16篇
  1988年   15篇
  1987年   16篇
  1986年   14篇
  1985年   12篇
  1984年   21篇
  1983年   14篇
  1982年   6篇
  1981年   15篇
  1980年   9篇
  1979年   7篇
  1978年   6篇
  1977年   6篇
  1973年   3篇
  1965年   3篇
排序方式: 共有5640条查询结果,搜索用时 10 毫秒
991.
The yeast Zygosaccharomyces bailii , known to have peculiar resistance to several environmental constraints, is very little known with respect to its genetics and life cycle. In addition to molecular and biochemical studies, cytofluorimetric and morphological analyses can also add information necessary to shed light on its interesting features. In the present study, the DNA and protein content as well as the cellular morphology of Z. bailii populations growing in minimal medium supplemented with different carbon sources and with the addition of different organic acids were investigated. The results show the occurrence of a multibudded phenotype and of a low, but significant percentage of binucleate cells occurring in the early-stationary phase. These traits appear to be different in comparison with the better-known laboratory yeast Saccharomyces cerevisiae . Experiments and speculations about these features and possible implications with Z. bailii main characteristics are discussed.  相似文献   
992.
Due to its minor groove selectivity, Me-lex preferentially generates N3-methyladenine (3-MeA) adducts in double-stranded DNA. We undertook a genetic approach in yeast to establish the influence of base excision repair (BER) defects on the processing of Me-lex lesions on plasmid DNA that harbors the p53 cDNA as target. We constructed a panel of isogenic strains containing a reporter gene to test p53 function and the following gene deletions: deltamag1, deltaapn1apn2, and deltaapn1apn2mag1. When compared with the wild-type strain, a decrease in survival was observed in deltamag1, deltaapn1apn2, and deltaapn1apn2mag1. The Me-lex-induced mutation frequency increased in the following order: wild type < deltamag1< deltaapn1apn2 = deltaapn1apn2mag1. A total of 77 mutants (23 in wild type, 31 in deltamag1, and 23 in deltaapn1apn2) were sequenced. Eighty-one independent mutations (24 in wild type, 34 in deltamag1, and 23 in deltaapn1apn2) were detected. The majority of base pair substitutions were AT-targeted in all strains (14/23, 61% in wild type; 20/34, 59%, in deltamag1; and 14/23, 61%, in deltaapn1apn2). The Mag1 deletion was associated with a significant decrease of GC > AT transitions when compared with both the wild-type and the AP endonuclease mutants. This is the first time that the impact of Mag1 and/or AP endonuclease defects on the mutational spectra caused by 3-MeA has been determined. The results suggest that 3-MeA is critical for Me-lex cytotoxicity and that its mutagenicity is slightly elevated in the absence of Mag1 glycosylase activity but significantly higher in the absence of AP endonuclease activity.  相似文献   
993.
994.

Background

In patients with acute respiratory distress syndrome (ARDS), it is well known that only part of the lungs is aerated and surfactant function is impaired, but the extent of lung damage and changes in surfactant turnover remain unclear. The objective of the study was to evaluate surfactant disaturated-phosphatidylcholine turnover in patients with ARDS using stable isotopes.

Methods

We studied 12 patients with ARDS and 7 subjects with normal lungs. After the tracheal instillation of a trace dose of 13C-dipalmitoyl-phosphatidylcholine, we measured the 13C enrichment over time of palmitate residues of disaturated-phosphatidylcholine isolated from tracheal aspirates. Data were interpreted using a model with two compartments, alveoli and lung tissue, and kinetic parameters were derived assuming that, in controls, alveolar macrophages may degrade between 5 and 50% of disaturated-phosphatidylcholine, the rest being lost from tissue. In ARDS we assumed that 5–100% of disaturated-phosphatidylcholine is degraded in the alveolar space, due to release of hydrolytic enzymes. Some of the kinetic parameters were uniquely determined, while others were identified as lower and upper bounds.

Results

In ARDS, the alveolar pool of disaturated-phosphatidylcholine was significantly lower than in controls (0.16 ± 0.04 vs. 1.31 ± 0.40 mg/kg, p < 0.05). Fluxes between tissue and alveoli and de novo synthesis of disaturated-phosphatidylcholine were also significantly lower, while mean resident time in lung tissue was significantly higher in ARDS than in controls. Recycling was 16.2 ± 3.5 in ARDS and 31.9 ± 7.3 in controls (p = 0.08).

Conclusion

In ARDS the alveolar pool of surfactant is reduced and disaturated-phosphatidylcholine turnover is altered.  相似文献   
995.
996.
Pseudomonas stutzeri OX1 meta pathway genes for toluene and o-xylene catabolism were analyzed, and loci encoding phenol hydroxylase, catechol 2,3-dioxygenase, 2-hydroxymuconate semialdehyde dehydrogenase, and 2-hydroxymuconate semialdehyde hydrolase were mapped. Phenol hydroxylase converted a broad range of substrates, as it was also able to transform the nongrowth substrates 2,4-dimethylphenol and 2,5-dimethylphenol into 3,5-dimethylcatechol and 3,6-dimethylcatechol, respectively, which, however, were not cleaved by catechol 2,3-dioxygenase. The identified gene cluster displayed a gene order similar to that of the Pseudomonas sp. strain CF600 dmp operon for phenol catabolism and was found to be coregulated by the tou operon activator TouR. A hypothesis about the evolution of the toluene and o-xylene catabolic pathway in P. stutzeri OX1 is discussed.  相似文献   
997.
Summary The biosynthesis of rhodanese was studied in human hepatoma cell lines by immunoblotting and pulselabeling experiments using polyclonal antibodies raised against the bovine liver enzyme. Rhodanese, partially purified from human liver, showed an apparent molecular weight of 33,000 daltons, coincident with that of rhodanese from Hep 3B cells. After pulse labeling of Hep 3B cells both at 37°C and 25°C, rhodanese in the cytosol fraction exhibited the same molecular weight as the enzyme isolated from the particulate fraction containing mitochondria. Moreover, newly synthesized rhodanese from total Hep 3B RNA translation products showed the same electrophoretic mobility as rhodanese from Hep 3B cells. These results suggest that rhodanese, unlike most mitochondrial proteins, is not synthesized as a higher molecular weight precursor.  相似文献   
998.
Mitochondrial (mt) DNA depletion syndromes can arise from genetic deficiencies for enzymes of dNTP metabolism, operating either inside or outside mitochondria. MNGIE is caused by the deficiency of cytosolic thymidine phosphorylase that degrades thymidine and deoxyuridine. The extracellular fluid of the patients contains 10-20 microM deoxynucleosides leading to changes in dTTP that may disturb mtDNA replication. In earlier work, we suggested that mt dTTP originates from two distinct pathways: (i) the reduction of ribonucleotides in the cytosol (in cycling cells) and (ii) intra-mt salvage of thymidine (in quiescent cells). In MNGIE and most other mtDNA depletion syndromes, quiescent cells are affected. Here, we demonstrate in quiescent fibroblasts (i) the existence of small mt dNTP pools, each usually 3-4% of the corresponding cytosolic pool; (ii) the rapid metabolic equilibrium between mt and cytosolic pools; and (iii) the intra-mt synthesis and rapid turnover of dTTP in the absence of DNA replication. Between 0.1 and 10 microM extracellular thymidine, intracellular thymidine rapidly approaches the extracellular concentration. We mimic the conditions of MNGIE by maintaining quiescent fibroblasts in 10-40 microM thymidine and/or deoxyuridine. Despite a large increase in intracellular thymidine concentration, cytosolic and mt dTTP increase at most 4-fold, maintaining their concentration for 41 days. Other dNTPs are marginally affected. Deoxyuridine does not increase the normal dNTP pools but gives rise to a small dUTP and a large dUMP pool, both turning over rapidly. We discuss these results in relation to MNGIE.  相似文献   
999.
Immunity and tumor protection in mice transgenic for human MUC.1, a glycoprotein expressed in the majority of cancers of epithelial origin in humans, were induced by vaccination with B lymphocytes genetically programmed to activate MUC.1-specific CD4 T cells. Their activation required a functional cooperation between two Th cells, one specific for a self (MUC.1) and the other for a nonself T cell determinant. The immunological switch provided by Th-Th cooperation was sufficient to induce MUC.1-specific CD4 and CD8 T cell responses in MUC.1-transgenic mice, and protect them permanently from tumor growth. CD4 T cells specific for MUC.1 lacked cytolytic function, but produced IFN-gamma upon restimulation with Ag. We conclude that immunity against tumor self-Ags and tumor protection can be regulated exploiting an inherent property of the immune system.  相似文献   
1000.
Abnormalities in the interactions of cells with the extracellular matrix (ECM) play an important role in the development and progression of many types of cancer and are a hallmark of malignant transformation. The dystroglycan (DG) complex is a transmembrane glycoprotein that forms a continuous link from the ECM to the actin cytoskeleton, providing structural integrity and perhaps transducing signal, in a manner similar to integrins. Deregulated expression of DG has been reported in a variety of human malignancies and related to tumor differentiation and aggressiveness. In breast cancer, reduced DG expression has been associated with patient survival and with loss of differentiation of tumor cells. Limited data are available on DG physiology in epithelial cells. In this study, we used the HC11 spontaneously immortalized murine mammary epithelial cells to study DG function(s) and regulation in normal cells. We found that expression of DG protein and mRNA is cell-cycle and cell-density regulated in these cells. Moreover, expression of both DG subunits increased upon lactogenic differentiation of the HC11 cells. The turnover of cell-surface-expressed DG was evaluated in the same cells and half-life of DG subunits was evaluated to be about 12 h. DG-specific small inhibitory RNAs were used to analyze the effects of a reduced expression of DG in these cells. Cells in which DG expression was suppressed were growth inhibited, accumulated in the S-phase of the cell cycle, failed to undergo lactogenic differentiation, and displayed an increase in the percentage of apoptotic cells. Moreover, changes were observed in the expression and/or activity of several molecules involved in cell growth control. These results demonstrate that DG expression is tightly regulated in normal mammary epithelial cells and support the hypothesis that DG is involved in several functions other than structural integrity in these cells. This finding provides new insight into the roles played by DG in epithelial cell physiology and will contribute to our understanding of its involvement in the process of epithelial cell transformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号